Flammability is a chemical change because when you burn something, it no longer has the same properties.
<span> Ksp = [Ag+]^2[CO32-]that should be it </span>
Sharing of valence electrons.
Explanation:
In a covalent bonds, there is sharing of the valence electrons used in bonding between the two combining species.
The atoms taking part do not have a wide electronegativity difference between them and so they share the valence electrons to complete their octet and ensure their stability.
- For the formation of this bond type, each of the atom requires a odd or unpaired electrons.
- Covalent bonds are formed between atoms having zero or very small electronegativity difference.
Learn more:
Covalent bonds brainly.com/question/10903097
#learnwithBrainly
The molarity of the acid given the data from the question is 0.30 M
<h3>Balanced equation </h3>
2HNO₃ + Ba(OH)₂ —> Ba(NO₃)₂ + 2H₂O
From the balanced equation above,
- The mole ratio of the acid, HNO₃ (nA) = 2
- The mole ratio of the base, Ba(NO₃)₂ (nB) = 1
<h3>How to determine the molarity of the acid</h3>
From the question given above, the following data were obtained:
- Volume of acid, HNO₃ (Va) = 39.7 mL
- Volume of base, Ba(NO₃)₂ (Vb) = 24 mL
- Molarity of base, Ba(NO₃)₂ (Cb) = 0.250 M
- Molarity of acid, HNO₃ (Ma) =?
MaVa / MbVb = nA / nB
(Ma × 39.7) / (0.25 × 24) = 2
(Ma × 39.7) / 6 = 2
Cross multiply
Ma × 39.7 = 6 × 2
Ma × 39.7 = 12
Divide both side by 39.7
Ma = 12 / 39.7
Ma = 0.30 M
Learn more about titration:
brainly.com/question/14356286
#SPJ1
Answer:
1 mole represents 6.023×1023 particles.
1 mole of iodine atom= 6.023×1023
Given 127.0g of iodine.
no. of iodine atom = 1 mole of iodine
1mole of magnesium = 24g of Mg = 6.023×1023no.of Mg
Given 48g of Mg = 2×6.023×1023
no. of Mg = 2 moles of Mg
1 mole of chlorine atom= 6.023× 1023
no. of chlorine atom = 35.5g of chlorine atom
Given 71g of chlorine atom=2× 6.023× 1023
no. of chlorine atom = 6.023×1023
2 moles of chlorine atom.
Given that 4g of hydrogen atom.
will be equal to 4 × 6.023 × 1023
no. of atoms of hydrogen= 4 moles of hydrogen atom.