1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
3 years ago
8

An object is in circular motion. How will the object behave if the centripetal force is removed

Physics
1 answer:
stich3 [128]3 years ago
3 0

The object will sail away in a straight line ... continuing in the same direction it was going when the centripetal force stopped.

You might be interested in
According to recent research, ice skaters are able to glide smoothly across the ice because _____.
nekit [7.7K]
In the blank should go of friction.
8 0
3 years ago
Why are there only two elements in the first period of the periodic table?(1 point)
Katen [24]

Answer:

because only two electrons can fit in the first orbit around the nucleus, and each period on the table is organized by number of orbits

6 0
2 years ago
How much work is required to compress 5.05 mol of air at 19.5°C and 1.00 atm to one-eleventh of the original volume by an isothe
Rus_ich [418]

Explanation:

(a)  For an isothermal process, work done is represented as follows.

             W = -nRT ln(\frac{V_{2}}{V_{1}})

Putting the given values into the above formula as follows.

        W = -nRT ln(\frac{V_{2}}{V_{1}})

             = - 5.05 mol \times 8.314 J/mol K \times (19.5 + 273) K \times ln (\frac{\frac{V_{1}}{11}}{V_{1}})

             = -12280.82 \times ln (0.09)

             = -12280.82 \times -2.41

             = 29596.78 J

or,         = 29.596 kJ       (as 1 kJ = 1000 J)

Therefore, the required work is 29.596 kJ.

(b) For an adiabatic process, work done is as follows.

         W = \frac{P_{1}V^{\gamma}_{1}(V^{1-\gamma}_{2} - V(1-\gamma)_{1})}{(1 - \gamma)}

              = \frac{-nRT_{1}(11^{\gamma - 1} - 1)}{1 - \gamma}

              = \frac{-5.05 \times 8.314 J/mol K \times 292.5 (11^{1.4 - 1} - 1)}{1 - 1.4}

              = 49.41 kJ

Therefore, work required to produce the same compression in an adiabatic process is 49.41 kJ.

(c)   We know that for an isothermal process,

               P_{1}V_{1} = P_{2}V_{2}

or,       P_{2} = \frac{P_{1}V_{1}}{V_{2}}

                    = 1 atm (\frac{V_{1}}{\frac{V_{1}}{11}})

                    = 11 atm

Hence, the required pressure is 11 atm.

(d)   For adiabatic process,  

          P_{1}V^{\gamma}_{1} = P_{2}V^{\gamma}_{2}

or,       P_{2} = P_{1} (\frac{V_{1}}{V_{2}})^{1.4}

                    = 1 atm (\frac{V_{1}}{\frac{V_{1}}{11}})^{1.4}

                    = 28.7 atm

Therefore, required pressure is 28.7 atm.

6 0
3 years ago
Three long parallel wires each carry 2.0-A currents in the same direction. The wires are oriented vertically, and they pass thro
blagie [28]

Answer:

21.2\times 10^{-6} T

Explanation:

i  = magnitude of current in each wire = 2.0 A

a  = length of the side of the square = 4 cm = 0.04 m

r  = length of the diagonal of the square = \sqrt{2} a = \sqrt{2} (0.04) = 0.057 m

B = magnitude of magnetic field by wires at A and C

B = \left ( \frac{\mu _{o}}{4\pi } \right )\left ( \frac{2i}{a} \right )

B = (10^{-7}) \left ( \frac{2(2)}{0.04} \right )

B = 10\times 10^{-6} T

B' = magnitude of magnetic field by wire at B

B' = \left ( \frac{\mu _{o}}{4\pi } \right )\left ( \frac{2i}{r} \right )

B' = (10^{-7}) \left ( \frac{2(2)}{0.057} \right )

B' = 7.02\times 10^{-6} T

Net magnitude of the magnetic field at D is given as

B_{net} = \sqrt{B^{2}+B^{2}} + B'

B_{net} = \sqrt{2} B + B'

B_{net} = \sqrt{2} (10\times 10^{-6}) + (7.02\times 10^{-6})

B_{net} = 21.2\times 10^{-6} T

8 0
3 years ago
a student measures the speed of yellow light in water to be 2.00 x 10(to the 8th power) meters per second, 1.87 x 10(to the 8th
mamaluj [8]
<span>3) Neither precise or accurate. This is because of the deviation between the measurements, they vary and are not within a good range. And they are not close to the accepted value. In order to be precise the measurements have to be relatively close to each other, and to be accurate they have to be close to the accepted value.</span>
8 0
3 years ago
Other questions:
  • What is the final electron receptor in the light reaction of photosynthesis?
    6·1 answer
  • skateboarder, starting from rest, rolls down a 13.5 m ramp. When she arrives at the bottom of the ramp her speed is 7.37 m/s. If
    9·1 answer
  • A white dwarf can dramatically increase in brightness only if it
    15·1 answer
  • Compute VO when Vin = 0.5 V, in two different ways: a) using the equation VO = G (V+-V-) with G = 106; and b) using the Golden R
    9·1 answer
  • Now consider the case in which the object is between the lens and the focal point. Trace the P ray (use the label P1P1P_1 for th
    10·1 answer
  • Coherent light of frequency 6.37×1014 Hz passes through two thin slits and falls on a screen 88.0 cm away. You observe that the
    13·1 answer
  • A train travels north at a speed of 50 m/s.
    5·1 answer
  • A small amber bead with a mass of 12.6 g and a charge of −0.646 µC is suspended in equilibrium above the center of a large, hori
    10·1 answer
  • Why aren't humans as evolved as we think we are?
    10·1 answer
  • Matter and energy can convert into each other. True False
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!