Answer:
insert (array[] , value , currentsize , maxsize )
{
if maxsize <=currentsize
{
return -1
}
index = currentsize-1
while (i>=0 && array[index] > value)
{
array[index+1]=array[index]
i=i-1
}
array[i+1]=value
return 0
}
Explanation:
1: Check if array is already full, if it's full then no component may be inserted.
2: if array isn't full:
- Check parts of the array ranging from last position of range towards initial range and determine position of that initial range that is smaller than the worth to be inserted.
- Right shift every component of the array once ranging from last position up to the position larger than the position at that smaller range was known.
- assign new worth to the position that is next to the known position of initial smaller component.
Answer:
A bona fide occupational qualification defense
Explanation:
Since the store is for women clothing, the retail may prefer to employ only female to assist the customers. Under a bona fide occupational qualification defense, an employer is allowed to discriminate if a characteristic is a necessity for the performance of the job and for the business. Therefore, the store has a bona fide occupational qualification defense.
Answer:
no⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Answer:
vec(a) = 16 i + 16 j
mag(a) = 22.63 ft/s^2
Explanation:
Given,
- The two components of velocity are given for fluid flow:
u = 4*y ft/s
v = 4*x ft/s
Find:
What is the time rate of change of the velocity vector V (i.e., the acceleration vector) for a fluid particle at x = 1 ft. and y = 1 ft. at time t = 1 second?
Solution:
- The rate of change of velocity is given to be acceleration. We will take derivative of each components of velocity with respect to time t:
a_x = du / dt
a_x = 4*dy/dt
a_y = dv/dt
a_y = 4*dx/dt
- The expressions dx/dt is the velocity component u and dy/dt is the velocity component v:
a_x = 4*(4*y) = 16y
a_y = 4*(4*x) = 16x
- The acceleration vector can be expressed by:
vec(a) = 16y i + 16x j
- Evaluate vector (a) at x = 1 and y = 1:
vec(a) = 16*1 i + 16*1 j = 16 i + 16 j
- The magnitude of acceleration is given by:
mag(a) = sqrt ( a^2_x + a^2_y )
mag(a) = sqrt ( 16^2 + 16^2 )
mag(a) = 22.63 ft/s^2