Answer:
W = 311074.5 [J]
Explanation:
In order to solve this problem we must analyze two parts, in the first part by means of Newton's second law we can determine the acceleration of the beam, remembering that the sum of the forces is equal to the product of mass by acceleration.
∑F = m*a
F = forces acting on the beam [N]
m = mass = 425 [kg]
a = acceleration = 1.8 [m/s²]
The forces acting on the beam are the force of the crane up (positive) and the weight of the beam down (negative)
![F_{crane}-(425*9.81)= 425*1.8\\F_{crane}=4713.25 [N]](https://tex.z-dn.net/?f=F_%7Bcrane%7D-%28425%2A9.81%29%3D%20425%2A1.8%5C%5CF_%7Bcrane%7D%3D4713.25%20%5BN%5D)
Now in the second part, we use the definition of work, which is equal to the product of the force applied in the direction of displacement, that is, the product of force by distance.

where:
W = work [J]
F = force = 4713.25 [N]
d = distance = 66 [m]
![W=4713.25*66\\W=311074.5[J]](https://tex.z-dn.net/?f=W%3D4713.25%2A66%5C%5CW%3D311074.5%5BJ%5D)
(a) Force between the two charges
The electrostatic force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.
In this problem:



Substituting into the equation, we find

(b) direction of particle q2
Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.
Answer:
Technician B
Explanation:
A thermostat being stuck in an open position allows coolant to constantly circulate through the radiator which will cause a drop in the temperature of the engine. Hence, thermostat being stuck in an open position has nothing to do with burst upper radiator.
On the other hand, a radiator cap controls the pressure within the radiator which needs to be kept constant in order prevent overheating or damage to the radiator itself.
Therefore, technician B is correct.
Take the stone's position at ground level to be the origin, and the downward direction to be negative. Then its position in the air
at time
is given by

Let
be the depth of the well. The stone hits the bottom of the well after 5.00 s, so that
