1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedaia [141]
3 years ago
5

Which of the following is the most important reason why simple harmonic motion will not continue forever in most real-world situ

ations?
a. frictional effects dissipate energy.
b. the restoring force is not strong enough.
c. real-world objects have small spring constants.
d. gravitational forces slow the motion of the object.
Physics
1 answer:
d1i1m1o1n [39]3 years ago
4 0
<span>A.frictional effects dissipate energy.</span>
You might be interested in
After all that you have learned in this unit, construct a pamphlet (brochure) in Microsoft Publisher helping new freshman to enc
aleksandr82 [10.1K]
You're not going to like this answer, but it's the only one possible:. It wasn't I who learned anything in this unit. If it was either of us, it was YOU. I can't even tell from reading the question what the topic of the unit was. Was it pamphlets ? Microsoft Publisher ? Freshmen ? Getting Through High School ? This is a lot like asking me to write something "in your own words".
5 0
3 years ago
Two gliders are on a frictionless, level air track. Both gliders are free to move. Initially, glider A moves to the right and gl
Yuliya22 [10]

Answer:

The change in momentum of both objects is the same but in opposite direction.

Explanation:

Hi there!

The momentum of the system is calculated as the sum of the momentums of each glider. The momentum of the system is conserved if no external force is acting on the objects (as in this case). That means that the initial momentum of the system is equal to the final momentum of the system.

The momentum of each glider is calculated as follows:

p = m · v

Where:

p = momentum.

m = mass of the glider.

v = velocity.

The momentum of the system for glider A and B can be calculated as follows:

initial momentum = mA · vA + mB · vB

Where:

mA and vA = mass and velocity of glider A

mB and vB = mass and velocity of glider B

Initially, glider B is at rest so that vB = 0. Then, the initial momentum of the system is:

initial momentum = mA · vA

The final momentum of the system is calculated as follows:

final momentum = mA · vA´ + mB · vB´

Where vA´ and vB´ are the final velocities of glider A and B respectively.

We know that mB = 4mA and that vA´ is negative. The the final momentum will be:

final momentum = -mA · vA´ + 4mA · vB´

Since initial momentum = final momentum:

mA · vA = -mA · vA´ + 4mA · vB´

mA · vA + mA · vA´ = 4mA · vB´

<u>vA + vA´ = 4 vB´</u>

<u />

The change in momentum of glider A (ΔpA) is calculated as follows:

ΔpA = final momentum - initial momentum

ΔpA =  -mA · vA´ - mA · vA = -mA (vA + vA´) = -4mA · vB´

The change in momentum of glider B (ΔpB) is calculated as follows:

ΔpB = final momentum - initial momentum

ΔpB = 4mA · vB´ - 0 = 4mA · vB´

Then, the change in momentum of both objects is the same but in opposite direction. That´s why the momentum is conserved.

4 0
3 years ago
In the year 2081 in a shipping port on the moon, workers for Ore-Space, Inc., hoist a 500.0 kg hunk of anorthosite moon rock by
Naddik [55]

Answer:

2,800 n

Explanation:

hope this helps, have a nice day/night! :D

7 0
3 years ago
A 24 kg child sits on a 2.0-m-long rope swing. You are going to give the child a small, brief push at regular intervals.
Bess [88]

time should you wait between pushes is 2.83 sec.

the question is incomplete, full statement is-

A 24 kg child sits on a 2.0-m-long rope swing. You are going to give the child a small, brief push at regular intervals. If you want to increase the amplitude of her motion as quickly as possible, how much time should you wait between pushes?

<h3>What is Amplitude?</h3>

In physics, amplitude refers to the greatest displacement or distance that a point on a vibrating body or wave may move relative to its equilibrium location. It is equivalent to the vibration path's half-length.

regular interval - at similarly spaced intervals: having the same interval of time between occurrences From 4 a.m. to midnight, the buses operate at regular intervals. The boards are positioned at regular intervals, with an equal amount of space between each.

The length of swing, l = 2.1 m

The time between the pushes is nothing but the Time period

and is given by the formula,

T = 2\pi  ( \frac{l}{g}  )^{\frac{1}{2} }

= 2 * 3.14 ( 2.0/ 9.8 ) ^ (1/2)

= 2.83 sec

to learn more about Amplitude go to - brainly.com/question/3613222

#SPJ4

3 0
1 year ago
Which of the following is true for a parallel circuit? The current is the same across all resistors in the circuit. The voltage
wel
A Parallel circuit has certain characteristics and basic rules: A parallel circuit has two or more paths for current to flow through. Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source.
4 0
3 years ago
Other questions:
  • Which statement regarding the importance of human relations is false? A. People accomplish more in their work and personal lives
    6·2 answers
  • A student is trying to calculate the density of a ball. She already knows the mass, but she needs to determine the volume as wel
    6·1 answer
  • Please Help!!!
    10·1 answer
  • An electric motor rotating a workshop grinding wheel at a rate of 1.31 ✕ 102 rev/min is switched off. Assume the wheel has a con
    13·1 answer
  • Ohms law in symbols is
    9·1 answer
  • A _______ satellite records reflected wavelengths from Earth's surface
    13·2 answers
  • If a Ball Falls from a girls hand, How does its speed change?
    6·2 answers
  • Q 26.12: Assume current flows in a cylindrical conductor in such a way that the current density increases linearly with radius,
    13·1 answer
  • A copper calorimeter of mass 120g contains 70g of water and 10g of ice at 0°C. What mass of steam at 100°C must be passed into t
    14·1 answer
  • Please help 9.2.1 project in science just ned an example​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!