The answer is negative 14
The temperature of a fluid rises when energy is given to it. This phenomenon can be described by the equation:
Q = MCp ΔT
where,
Q is the quantity of added energy.
M is the fluid's mass.
The fluid's heat capacity is denoted by Cp.
T stands for temperature change.
<h3>What happens to a fluid's kinetic energy as the temperature rises?</h3>
The mean kinetic energy of the particles in a liquid rises with temperature. The molecules' higher average kinetic energies allow them to more easily overcome the attraction forces that keep them bound together.
<h3>Which temperature rise makes liquids more fluid?</h3>
The most significant determining factor for fluidity is pouring temperature. Therefore, the fluidity increases as the pouring temperature increases.
<h3>How does a liquid react when the temperature rises?</h3>
Particles in a solid, liquid, or gas move more quickly as its temperature rises. The particles slow down as the temperature drops. When a liquid is sufficiently cooled, it turns into a solid.
learn more about temperature of the fluid here
brainly.com/question/4215851
#SPJ4
It's a subsection of Geology and Biology
Answer:
M₁₂ = 1.01 10⁻⁴ H
, Fem = 3.54 10⁻³ V
Explanation:
The mutual inductance between two systems is
M₁₂ = N₂ Ф₁₂ / I₁
where N₂ is the number of turns of the inner solenoid N₂ = 21.0, i₁ the current that flows through the outer solenoid I₁ = 35.0 A / s and fi is the flux of the field of coil1 that passes through coil 2
the magnetic field of the coil1 is
B = μ₀ n I₁ = μ₀ N₁/l I₁
the flow is
Φ = B A₂
the area of the second coil is
A₂ = π d₂ / 4
Φ = μ₀ N₁ I₁ / L π d² / 4
we substitute in the first expression
M₁₂ = N₂ μ₀ N₁ / L π d² / 4
M₁₂ = μ₀ N₁ N₂ π d² / 4L
d = 0.170 cm = 0.00170 m
L = 4.00 cm = 0.00400 m
let's calculate
M₁₂ = 4π 10⁻⁷ 6750 21 π 0.0017²/ (4 0.004)
M₁₂ = π² 0.40966 10⁻⁷ / 0.004
M₁₂ = 1.01 10⁻⁴ H
The electromotive force is
Fem = - M dI₁ / dt
Fem = - 1.01 10⁻⁴ 35.0
Fem = 3.54 10⁻³ V