Answer:
<em>Velocity</em><em> </em><em>-</em><em>time</em><em> </em><em>graph</em><em> </em>
Explanation:
hope it helps ✌️✌️
Answer:
False
Explanation:
The Latin word "Cirro" means "curly" or "curl of hair" as in a cirrocumulus cloud. Cirrocumulus clouds are wispy clouds, and while they do appear high in the sky, the word "cirro" does not mean high in level.
Therefore, the answer is False.
Have a lovely rest of your day/night, and good luck with your assignments! ♡
Answer:
1.) 11 km/s
2.) 9.03 × 10^-5 metres
Explanation:
Given that an electron enters a region of uniform electric field with an initial velocity of 64 km/s in the same direction as the electric field, which has magnitude E = 48 N/C.
Electron q = 1.6×10^-19 C
Electron mass = 9.11×10^-31 Kg
(a) What is the speed of the electron 1.3 ns after entering this region?
E = F/q
F = Eq
Ma = Eq
M × V/t = Eq
Substitute all the parameters into the formula
9.11×10^-31 × V/1.3×10^-9 = 48 × 1.6×10^-19
V = 7.68×10^-18 /7.0×10^-22
V = 10971.43 m/s
V = 11 Km/s approximately
(b) How far does the electron travel during the 1.3 ns interval?
The initial velocity U = 64 km/s
S = ut + 1/2at^2
S = 64000×1.3×10^-6 + 1/2 × 8.4×10^12 × ( 1.3×10^-9)^2
S =8.32×10^-5 + 7.13×10^-6
S = 9.03 × 10^-5 metres
Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.
Answer:
Explanation:
dU= dq+w
dU is change in internal energy of the system
dq is the amount heat added or released by the system which be positive or negative respectivelý
And w is the amount of work done by the system or on the system which will be positive or negative respectively.
Hence,
dU= 250+80= 330 J
The change will be positive