(a) 392 N/m
Hook's law states that:
(1)
where
F is the force exerted on the spring
k is the spring constant
is the stretching/compression of the spring
In this problem:
- The force exerted on the spring is equal to the weight of the block attached to the spring:

- The stretching of the spring is

Solving eq.(1) for k, we find the spring constant:

(b) 17.5 cm
If a block of m = 3.0 kg is attached to the spring, the new force applied is

And so, the stretch of the spring is

And since the initial lenght of the spring is

The final length will be

Its A: the use of hydropower often changes the natural flow of water through an ecosystem
add me on robloxs <span />
It requires skill and eye coordination!!
The momentum of both the identical balls would eventually be transferred to one another when it comes to a point wherein they will collide. In addition, the phenomenon is called an elastic collision wherein both the momentum and energy of the system would considered to be conserved.
"These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation. In the Earth's polar regions ocean watergets very cold, forming sea ice." this is what I found...