This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
It mimics the real world accurately
Explanation:
Experiments conducted in the field clearly presents the real world at it is to the scientist. Hardly can any part be controlled precisely and this gives a near to perfect scenario.
- In the laboratory, for example, an organism is isolated from its environment and might not fully display its natural instinct and physiological capabilities.
- Most laboratory set up are driven towards a model instead of real life settings.
- The laboratory is more controlled and less varied and might truly represent the real world. It will only portray a part of the real world and series of further tests might have to be carried out to have a better model.
Learn more:
Experiment brainly.com/question/5096428
#learnwithBrainly
Bode law, a planet<span> was believed to exist </span>between<span> .... An Astronomer's Account of the </span>Missing Planet Between<span> Mars and </span>Jupiter<span> as Interpreted </span>Jupiter<span> ·</span>Saturn<span> · Uranus · Neptune.</span>
They both flow in currents. Water has a pump that works like a battery and pipes that work like a circuit.
Answer:
The answer is: B. -487 ..............