Answer:
D a thermometer
Explanation: It measures and track Celcius and Feirinheit.
Answer:
b) a = -k / m x
, c) d²x / dt² = - A w² cos (wt+Ф)
, d) and e) T = 2π √m / k
h) a = - A w² cos (wt+Ф)
Explanation:
a) see free body diagram in the attachment
b) We write Newton's second law
Fe = m a
-k x = ma
a = -k / m x
c) the acceleration is
a = d²x / dt²
If x = A cos wt
v = dx / dt = -A w sin (wt
+Ф)
a = d²x / dt² = - A w² cos (wt+Ф)
d) we substitute in Newton's second law
d²x / dt² = -k / m x
We call
w² = k / m
e) substitute to find w
-A w² cos (wt+Ф) = -k / m A cos (wt+Ф)
w² = k / m
Angular velocity and frequency are related
w = 2π f
f = 1 / T
We substitute
T = 2π / w
T = 2π √m / k
g) v= - A w sin (wt+Ф)
h) acceleration is
a = - A w² cos (wt+Ф)
Answer:
Explanation:
When the number of slits increases, the intensity of fringes increases.
So, the fringes appear to be more bright.
As we know that the fringe width is inversely proportional to the number of slits, so as the number of slits increases, the fringe width decreases, hence the fringes are narrower, bright and close together.
Answer:
0.5639m
Explanation:
For a young double slit experiment the expression below gives the angular separation for m dark fringe having slit width d and wavelength λ
=sin⁻¹(mλ/d)
mλ /d =y/L
for the first order,
y= mλL/d
For ratio separation y₀/yD=1 and d= 1
y₀/yD= [mλ ₀L₀/d]/[mλD.LD./d]
1=λ ₀L₀/λD.LD.
λD.LD= λ ₀L₀
L₀= λD.LD/ λ ₀..............(1)
Then substitute the given values into (1) we have
L₀=471 *0.497/611
= 0.3831m
Distance by which the screen has to be moved towards the slit is
LD- Lo
0.947-0.3831= 0.5639m
Answer:
More than enough solar energy (8.2 million quad BTUs, 1 quad = 2.9 x1011 kWh) hits Earth's surface each year to meet all of societies' needs. Currently we use about 400 quads per year to run our society. Good building design allows passive use of sunlight to heat homes. Simple solar collectors are used to heat water and cook food. As useful as it is for these purposes, thermal energy from sunlight is still a low quality energy compared to electricity. Computers, most machinery, light bulbs, subway trains, and much more all require electricity. It is possible to turn thermal energy from the sun into electricity. In this unit we will examine how.
. We will also examine how to make electricity directly from light using the photovoltaic cells.