First you must convert Km/hr to m/s. 90 km/hr equals 25m/s (this can be done through a conversion table by plugging in the conversion values). Then you need to see what was given:
vi (initial velocity)= 0m/s
vf (final velocity= 25m/s (90km/hr)
t (time)= 10s
Next you should find an equation that requires only the values you know and gives you the value you're looking for. Sometimes that requires two equations to be used, but in this case you only need one. The best equation for this would be a=(vf-vi)/t. Finally, plug in your values (a=(25-0)/10) to get your answer which would be 2.5m/s^2. Hope this helped!
It is due to the excess stress.
I believe it is away from his arm since the question states his arm is applying an upwards force
Answer:
Δτ = 50 N.m
Explanation:
The torque applied on an object is given by the product of the force applied on it and the perpendicular distance between the force and the axis of rotation of the object. That is:
τ = F r
where,
τ = Torque applied on the object
F = Force applied on it
r = distance from axis of rotation
<u>FOR HANDLE SIDE OF DOOR</u>:
τ₁ = F r₁
where,
τ₁ = Torque applied on the object = ?
F = Force applied on it = 100 N
r₁ = distance from axis of rotation = 1 m
Therefore,
τ₁ = (100 N)(1 m)
τ₁ = 100 N.m
<u></u>
<u>FOR MIDDLE OF DOOR</u>:
τ₂ = F r₂
where,
τ₂ = Torque applied on the object = ?
F = Force applied on it = 100 N
r₂ = distance from axis of rotation = 1 m/2 = 0.5 m
Therefore,
τ₂ = (100 N)(0.5 m)
τ₂ = 50 N.m
Now, the difference between the amount of torque in both cases is:
Δτ = τ₁ - τ₂
Δτ = 100 N.m - 50 N.m
<u>Δτ = 50 N.m</u>
Answer:
s = 6.25 10⁻²² m
Explanation:
Polarizability is the separation of electric charges in a structure, in the case of the atom it is the result of the separation of positive charges in the nucleus and the electrons in their orbits, macroscopically it is approximated by
p = q s
s = p / q
let's calculate
s = 1 10⁻⁴⁰ / 1.6 10⁻¹⁹
s = 0.625 10⁻²¹ m
s = 6.25 10⁻²² m
We see that the result is much smaller than the size of the atom, therefore this simplistic model cannot be taken to an atomic scale.