<span>Hooke's law is F=-kx, which means the elastic force contained by the spring is a product of the distance it stretches and its spring constant, but the direction of the force is opposite that of the displacement. We calculate as follows:
</span><span>(3 kg)(9.8 m/s^2) = -k(-0.38 m)
</span>k =<span> 77.4
</span><span>Then use k to find the new displacement, again using Hooke's law:
(7 kg)(9.8 m/s^2) = -(77.4)x
x = -0.89 m</span>
<span>The distance between two objects is increased by three times the oringinal distance. Since they were already separated by one time the original distance,
the additional three times the oringinal distance now puts them four times the original distance apart.
Whether we're talking about the gravitational forces of attraction or
the electrical forces of attraction, either one is inversely proportional
to the square of the distance between the objects.
So changing the distance to four times the original distance causes
the forces to become 1/4</span>² as strong as they were originally.
The forces become 1/16 of their original magnitude.<span>
</span>
Answer:
The height of building should be 98.13 m plus the height of Daniel. Since the 63° was measured from his eye level.
Explanation:
Neither technician is correct.
Please don't touch my car.
Answer:
m = 69.9 kg
Explanation:
The mass and the weight of an object are two different quantities. Mass is basically the amount of matter that is present in a body. It remains same everywhere in the universe and measured in kilograms.
Weight is basically a force. It is the force by which earth attracts everything towards itself. The weight of an object changes from planet to planet, with the change in value of the gravitational acceleration (g).
Therefore, the relation between mass and weight of an object is given by the following formula:
W = mg
m = W/g
where,
m = mass = ?
W = Weight = 685 N
g = 9.8 m/s²
Therefore,
m = (685 N)/(9.8 m/s²)
<u>m = 69.9 kg</u>