1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
3 years ago
13

an incandescent lightbulb has an efficiency of 2.1% and a power of 60 w. how much light energy does the lighbulb produce in 1 se

cond
Physics
1 answer:
AveGali [126]3 years ago
5 0

Explanation:

Power output of the bulb:

0.021 × 60 W = 1.26 W

Energy produced by the bulb in 1 second:

E = Pt

E = (1.26 W) (1 s)

E = 1.26 J

Round as needed.

You might be interested in
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
A 180-ohm resistor has 0.10 A of current in it. what is the potential difference across the resistor
Firlakuza [10]
We know V=IR (Ohm's law).

We are given R=180Ω and I=0.1A, then V=(0.1AΩ)(180Ω). Therefore

V=18V
5 0
3 years ago
Answer this please. thanks in advance!! please tel me                                                                 a christma
saw5 [17]
If 50 identical light bulbs are connected in series across
a single power source, then the voltage across each bulb
is ( 1/50 ) of the voltage delivered by the power source.
6 0
3 years ago
Read 2 more answers
We can determine the velocity of a wave when given the frequency and the
Kobotan [32]

Hello.

The answer is: D. wavelength

This is correct because   frequency x wavelength = speed

Have a nice day

3 0
3 years ago
Read 2 more answers
The gasoline in a car does 40,000 J of work on a car and generates a constant force of 20 N. How far did the car go?
AnnyKZ [126]

L=F•d=>d=L/F=40,000/20=2,000 m

7 0
3 years ago
Other questions:
  • 9. A sailor pulls a boat along a dock using a rope at an angle of 60.0° with the
    9·1 answer
  • A cat with a mass of 4.50 kilograms sits on a ledge 0.800 meters above the ground. What is the potential energy of the cat? 346
    5·2 answers
  • While in a stream 39 cm deep, they look down into the water and see a craw fish at the bottom. How deep does the stream appear t
    9·1 answer
  • 2.
    5·1 answer
  • Activity: Lab safety and Equipment Puzzle
    12·1 answer
  • How might the temperatures on Mercury be different if it had the same mass as Earth?
    7·1 answer
  • Pls someone help me with this :(
    9·1 answer
  • Clouds form when water vapor in the air ______.
    12·1 answer
  • What are Base Quantities ?​
    10·2 answers
  • What is the momentum of a 50 kg object traveling 200 m/s
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!