Meter #2 is more precise.
There's no information here that tells us which meter is more accurate.
Answer:
Explanation:
a ) AM radio band (540–1600 kHz)
frequency = 540 kHz = 540 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 540 x 10³
= 555.55 m
frequency = 1600 kHz = 1600 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 1600 x 10³
= 187.5 m
maximum wavelength = 555.55 m
minimum wavelength = 187.5 m
b )
AM radio band (88 - 108 MHz)
frequency = 88 MHz = 88 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 88 x 10⁶
= 3.41 m
frequency = 108 MHz = 108 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 108 x 10⁶
= 2.78 m
maximum wavelength = 3.41 m
minimum wavelength = 2.78 m
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s