Around 8 hours and 20 minutes
Explanation:
I divided 500 by 60 and got 8.3333333333 and i round it up to 8.20, so it is 8 hours and 20 minutes.
Answer:
ΔU = 2 mg h
Explanation:
In a spring mass system the potential energy is U = m g h
where h is measured from the equilibrium point of the spring
the potential energy at the highest point is
U₁ = m g h
the potential energy at the lowest point is
U₂ = m g (-h)
instead in this energy it is
ΔU = 2 mg h
In this two points the kinetic energy is zero, but there is elastic potential energy that has the same value in the two points, so its change is zero
I believe it is -1.11 m/s^2. I will let you know if its correct
Answer:
67
Explanation:
- The atomic number (Z) of an atom is equal to the number of protons in the nucleus
- The mass number (A) of an atom is equal to the sum of protons and neutrons in the nucleus
Therefore, calling p the number of protons and n the number of neutrons, for element X we have:
Z = p = 23
A = p + n = 90
Substituting p=23 into the second equation, we find the number of neutrons:
n = 90 - p = 90 - 23 = 67
Answer:
The value of change in internal l energy of the gas = 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.