1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
15

A 0.80 kg object tied to the end of a 2.0 m string swings as a pendulum. At the lowest point of its swing, the object has a kine

tic energy of 10 J. Determine the speed of the object at the instant when the string makes an angle of 50o with the vertical.
Physics
1 answer:
devlian [24]3 years ago
6 0

Answer:

3.32 m/s

Explanation:

From the law of conservation of energy, the sum of mechanical and kinetic energy should be equal to the 10 J given. Potential energy is given by mgh where m is mass, g is acceleration due to gravity and h is the height. For this case, h= l(1-cos\theta) and l is string length, given as 2 m, \theta is given as 50 degrees. Kinetic energy is given by 0.5mv^{2} and it is this velocity that is unknown.

10J=0.5\times 0.8kg\times v^{2}+ 0.8kg\times 9.81\times 2m(1-cos 50^{\circ})\\v\approx 3.32 m/s

You might be interested in
What is Newton's 2nd law of motion? *<br> Your answer
Novay_Z [31]
Acceleration of an object is depended upon the net force acting open the object and the mass of the object
4 0
3 years ago
Read 2 more answers
Find the wavelength λ of the 80.0-khz wave emitted by the bat. express your answer in millimeters.
vfiekz [6]

Answer:

4.29 millimeters

Explanation:

Bats emit ultrasound waves: in air, ultrasound waves travel at a speed of

v=343 m/s

The frequency of the waves emitted by this bat is:

f=80.0 kHz = 80,000 Hz

Therefore we can find the wavelength of the wave emitted by the bat by using the relationship between speed, frequency and wavelength:

\lambda=\frac{v}{f}=\frac{343 m/s}{80,000 Hz}=4.29\cdot 10^{-3} m=4.29 mm

4 0
3 years ago
A sound wave has a frequency of 500 Hz and a wavelength of 1.8 m. What is the wave speed of the sound wave? Question 1 options:
antoniya [11.8K]

Answer:

The wave speed of the sound wave is 900 \frac{m}{s}.

Explanation:

Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).

Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).

The propagation velocity is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation: v = f * λ.

In this case:

  • f= 500 Hz
  • λ= 1.8 m

Replacing:

v= 500 Hz* 1.8 m

v= 900 \frac{m}{s}

<u><em>The wave speed of the sound wave is 900 </em></u>\frac{m}{s}<u><em>.</em></u>

7 0
3 years ago
One of the waste products of a nuclear reactor is plutonium-239 . This nucleus is radioactive and decays by splitting into a hel
Gekata [30.6K]

Answer:

a) v_{U-235} = 2.68 \cdot 10^{5} m/s

v_{He-4} = -1.57 \cdot 10^{7} m/s  

b) E_{He-4} = 8.23 \cdot 10^{-13} J

E_{U-235} = 1.41 \cdot 10^{-14} J

 

Explanation:

Searching the missed information we have:                                        

E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J

m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg  

m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg            

a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:

Linear momentum:

p_{i} = p_{f}

m_{Pu-239}v_{Pu-239} = m_{He-4}v_{He-4} + m_{U-235}v_{U-235}

Since the plutonium nucleus is originally at rest, v_{Pu-239} = 0:

0 = m_{He-4}v_{He-4} + m_{U-235}v_{U-235}  

v_{He-4} = -\frac{m_{U-235}v_{U-235}}{m_{He-4}}    (1)

Kinetic Energy:

E_{Pu-239} = \frac{1}{2}m_{He-4}v_{He-4}^{2} + \frac{1}{2}m_{U-235}v_{U-235}^{2}

2*8.40 \cdot 10^{-13} J = m_{He-4}v_{He-4}^{2} + m_{U-235}v_{U-235}^{2}    

1.68\cdot 10^{-12} J = m_{He-4}v_{He-4}^{2} + m_{U-235}v_{U-235}^{2}   (2)    

By entering equation (1) into (2) we have:

1.68\cdot 10^{-12} J = m_{He-4}(-\frac{m_{U-235}v_{U-235}}{m_{He-4}})^{2} + m_{U-235}v_{U-235}^{2}  

1.68\cdot 10^{-12} J = 6.68 \cdot 10^{-27} kg*(-\frac{3.92 \cdot 10^{-25} kg*v_{U-235}}{6.68 \cdot 10^{-27} kg})^{2} +3.92 \cdot 10^{-25} kg*v_{U-235}^{2}  

Solving the above equation for v_{U-235} we have:

v_{U-235} = 2.68 \cdot 10^{5} m/s

And by entering that value into equation (1):

v_{He-4} = -\frac{3.92 \cdot 10^{-25} kg*2.68 \cdot 10^{5} m/s}{6.68 \cdot 10^{-27} kg} = -1.57 \cdot 10^{7} m/s                        

The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.

b) Now, the kinetic energy of each nucleus is:

For He-4:

E_{He-4} = \frac{1}{2}m_{He-4}v_{He-4}^{2} = \frac{1}{2} 6.68 \cdot 10^{-27} kg*(-1.57 \cdot 10^{7} m/s)^{2} = 8.23 \cdot 10^{-13} J

For U-235:

E_{U-235} = \frac{1}{2}m_{U-235}v_{U-235}^{2} = \frac{1}{2} 3.92 \cdot 10^{-25} kg*(2.68 \cdot 10^{5} m/s)^{2} = 1.41 \cdot 10^{-14} J

 

I hope it helps you!                                                                                    

3 0
3 years ago
How do i do a Wavelength and frequency problem
KengaRu [80]

Answer:

wavelength = v/f or wavelength equals to velocity over frequency

frequency= v/w or velocity over wavelength

frequency= 1/p or one over period or time

7 0
3 years ago
Other questions:
  • The product side of a chemical reaction is shown. → 7Ti2(SO4)3 Which number represents a coefficient?
    10·2 answers
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • A steam pipe for a 300-m-tall building receives superheated steam at 200 kPa at ground level. At the top floor the pressure is 1
    15·1 answer
  • on a recent adventure trip, Anita Break went rock climbing. Anita was able to perform 1370 J of work in 100 seconds. Determine A
    12·1 answer
  • Why is an iron core needed in an electromagnet?
    14·1 answer
  • How long does it take a 1.51 × 104 W steam engine to do 8.72 × 106 J of work? Round your answer to three significant figures
    6·1 answer
  • PLEASE HELP ME !!!!!
    9·1 answer
  • A Navy vessel is traveling due north during wartime. A torpedo has been launched by an enemy directly toward the stern (rear) of
    15·1 answer
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    11·1 answer
  • How much time does it take for a bird flying at a speed of 45 miles per hour to travel a distance
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!