Answer:
the energy when it reaches the ground is equal to the energy when the spring is compressed.
Explanation:
For this comparison let's use the conservation of energy theorem.
Starting point. Compressed spring
Em₀ = K_e = ½ k x²
Final point. When the box hits the ground
Em_f = K = ½ m v²
since friction is zero, energy is conserved
Em₀ = Em_f
1 / 2k x² = ½ m v²
v =
x
Therefore, the energy when it reaches the ground is equal to the energy when the spring is compressed.
Answer:
the velocity of the point P located on the horizontal diameter of the wheel at t = 1.4 s is 
Explanation:
The free-body diagram below shows the interpretation of the question; from the diagram , the wheel that is rolling in a clockwise directio will have two velocities at point P;
- the peripheral velocity that is directed downward
along the y-axis
- the linear velocity
that is directed along the x-axis
Now;


Also,

where
(angular velocity) = 

∴ the velocity of the point P located on the horizontal diameter of the wheel at t = 1.4 s is 
solution:
As Given plane is flying in east direction.
It throws back some supplies to designated target.
Time taken by the supply to reach the target =10 seconds
g = Acceleration due to gravity = - 9.8 m/s²[Taken negative as object is falling Downwards]
As we have to find distance from the ground to plane which is given by d.
d = 
=
meters
Distance from the ground where supplies has to be land to plane = Option B =490 meters