Molars are cavities in your teeth the dentists will scrape them out and fill them in for you at your earliest convinence need help with anything else while im here i can assist you!
Answer:
1.02 moles of AlCl3
Explanation:
Consider the balanced reaction equation shown below;
2Al(s) + 3CuCl2(aq) -------> 2AlCl3 (aq) + 3Cu(s)
This is the balanced reaction equation for the reaction going on above. Recall that the first step in solving any problem is to accurately put down the chemical reaction equation. This balanced reaction equation always serves a reliable guide in solving the problem at hand.
Given that;
3 moles of CuCl2 yields 2 moles of AlCl3
1.53 moles of CuCl2 yields 1.53 × 2 / 3 =1.02 moles of AlCl3
<span>Answer:
The HCl and KOH will react until one or the other is gone. As you have a larger volume of an equal concentration of HCl, the KOH will go first.
moles HCl = 0.04000 L * 0.100 M = 0.00400 moles
moles KOH = 0.02500 L * 0.100 M = 0.00250 moles
moles HCl left = 0.00400 - 0.00250 = 0.00150 moles
Your total volume is now 65.00 mL, so the [HCl] = 0.00150 moles / 0.06500 L = 0.0231 M = [H+]
pH = -log [H+] = -log (0.0231) = 1.64</span>
The volume of the 0.279 M Ca(OH)₂ solution required to neutralize 24.5 mL of 0.390 M H₃PO₄ is 51.4 mL
<h3>Balanced equation </h3>
2H₃PO₄ + 3Ca(OH)₂ —> Ca₃(PO₄)₂ + 6H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 3
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of acid, H₃PO₄ (Ma) = 0.390 M
- Volume of acid, H₃PO₄ (Va) = 24.5 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.279 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(0.39 × 24.5) / (0.279 × Vb) = 2/3
9.555 / (0.279 × Vb) = 2/3
Cross multiply
2 × 0.279 × Vb = 9.555 × 3
0.558 × Vb = 28.665
Divide both side by 0.558
Vb = 28.665 / 0.558
Vb = 51.4 mL
Thus, the volume of the Ca(OH)₂ solution needed is 51.4 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.