Answer:
Explanation:
Capacitor of 0.75μF, charged to 70V and connect in series with 55Ω and 140 Ω to discharge.
Energy dissipates in 55Ω resistor is given by V²/R
Since the 55ohms and 140ohms l discharge the capacitor fully, the voltage will be zero volts and this voltage will be shared by the resistor in ratio.
So for 55ohms, using voltage divider rule
V=R1/(R1+R2) ×Vt
V=55/(55+140) ×70
V=19.74Volts is across the 55ohms resistor.
Then, energy loss will be
E=V²/R
E=19.74²/55
E=7.09J
7.09J of heat is dissipated by the 55ohms resistor
Answer:The magnetic field around an electromagnet is just the same as the one around a bar magnet. It can, however, be reversed by turning the battery around. Unlike bar magnets, which are permanent magnets, the magnetism of electromagnets can be turned on and off just by closing or opening the switch.
Answer:
Part a)

Part b)

Explanation:
As per momentum conservation we know that there is no external force on this system so initial and final momentum must be same
So we will have




Part b)
By equation of kinetic energy we have




A conservative force is a force that when work is done against this force the work done does not depend on the path taken only the initial and final position.
What you know:
Vi=0m/s
Vf=143.8m/s
A=-9.8m/s
d=???
Use the equation Vf^2=Vi^2+2A(d)
Rearrange to isolate d: d=Vf^2/2A
d=(143.8)^2/2(-9.8)
d=20678.4/-19.6
d=-1055m
The tank was released from a height of 1055m