Answer:
Most exceptions to the trend of decreasing radius moving to the right within a period occur in the d-block.
Explanation:
- In a period as we advance from left to right, the number of valence electrons in the same shell increases due to which the effective nuclear charge increases and thus the atomic size decreases.
- In d-block atomic radius initially decreases then remains constant and increases towards the end.
- As one moves from Sc (scandium) to Zn (zinc), the effective nuclear charge increases by a factor of 1, this is because:
- The number of electrons are low in the inner shell.
- The shielding power of d-orbital is low.
- Inter electronic repulsions will be operating at a value less than the nuclear charge, which will result in decrease in atomic radii.
- As the number of electrons in the inner orbital increases the outer electrons repel one another which enables them to push away.
- Although d-orbital has less shielding power, the number of electrons present in it are high. Hence, the electron-electron repulsive force becomes dominant, this results in an increase in the atomic radii.
Therefore, most exceptions to the trend of decreasing radius moving to the right within a period occur in the d-block.
Learn more about the periodic table here:
<u>brainly.com/question/9238898</u>
#SPJ4
Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil
Answer:
6.169 μA
Explanation:
Formula for induced EMF is given by the equation;
EMF = M(di/dt). We are given;
di/dt = 2.5 A/s
M = 19μH = 19 × 10^(-6) H
Thus;
EMF = 19 × 10^(-6) × 2.5.
EMF = 47.5 × 10^(-6) V
Formula for current is;
i = EMF/R. R is resistance given as 7.7 ohms.
Thus; i = 47.5 × 10^(-6)/7.7
i = 6.169 μA
Answer:
1.6×10⁻⁶ N.
Explanation:
From the question,
F = (V/r)q......................... Equation 1
Where F = Electric force on the raindrop, V = Potential difference between the base of the cloud and the ground, r = distance between the base of the cloud and the ground, q = the charge on a rain drop.
Given: V = 200MV = 200×10⁶ V, r = 500 m, q = 4.0×10⁻¹² C.
Substitute these values into equation 1
F = [(200×10⁶ )/500]×4.0×10⁻¹²
F = 1.6×10⁻⁶ N.
Can you give us a picture or something please!!