Explanation:
A lever is a rigid bar which moves freely about a fixed point called fulcrum....
The types of lever are :
- First class lever
- Second class lever
- Third class lever....
Answer:
it will take 36.12 ms to reduce the capacitor's charge to 10 μC
Explanation:
Qi= C×V
then:
Vi = Q/C = 30μ/20μ = 1.5 volts
and:
Vf = Q/C = 10μ/20μ = 0.5 volts
then:
v = v₀e^(–t/τ)
v₀ is the initial voltage on the cap
v is the voltage after time t
R is resistance in ohms,
C is capacitance in farads
t is time in seconds
RC = τ = time constant
τ = 20µ x 1.5k = 30 ms
v = v₀e^(t/τ)
0.5 = 1.5e^(t/30ms)
e^(t/30ms) = 10/3
t/30ms = 1.20397
t = (30ms)(1.20397) = 36.12 ms
Therefore, it will take 36.12 ms to reduce the capacitor's charge to 10 μC.
Answer:
Change of momentum = M (Vf - (-Vi)) where V represents the scalar speeds of the ball or
I = M (ui + uf) and I is the impulse ΔM V = I Force = Change in Momentum
Answer:
See Explanation
Explanation:
The relationship between angle of an incline and the acceleration of an object moving down the incline.
As the angle of an incline increases, so does the acceleration of the body moving down the incline increases, resolving the force acting on an inclined object
Parallel force = mgsin, perpendicular = mgcosΘ
With th weigh component 'mg' of the parallel force accounting for the acceleration of the body down the incline.
mgsinΘ = ma
Fnet = ma
B.) From Fnet = ma
Fnet = ma
a = Fnet / m
Where Fnet = Net force = mgsinΘ, a = acceleration