Answer: 1.8 g
Explanation:
We start first, by calculating the amount of Helium
n = m/M
m = mass of Helium
M = molar mass if Helium
n = 2/4 = 0.5 moles
proceeding further, we use ideal gas law. PV = nRT
Then we have
P1V1/n1T1 = P2V2/n2T2
So that,
n2 = n1T1P2V2/P1V1T2
From the question, we know that, P1 = P2, and T1 = T2. So that,
n2 = n1v2/v1
n2 = (0.5 * 3.9) / 2
n2 = 1.95/2
n2 = 0.975 moles. With this, we can determine the mass, m2 of Helium
n = m/M
m = n * M
m = 0.975 * 3.9
m = 3.8
The difference between both masses are 3.8 - 2 = 1.8 g
Thus, 1.8 g of Helium was added to the cylinder
Answer:
Applying enough force in one direction to move the object, making kinetic energy.
Explanation:
Simpleness
Answer:
It is possible by increasing the speed of the tennis ball by a factor of (Mass of the tennis ball)/(Mass of the basketball)
Explanation:
The momentum of a body = The bod's mass × The body's velocity
Therefore, the momentum of a given mass of an object, such as a tennis ball can be increased by increasing the velocity or speed of the object. Whereby the speed of the ball, v₁, is increased such that the momentum of the basketball and the tennis ball will be the same, is given by the following equation
Mass of the basketball × v₂ = Mass of the tennis ball × v₁
Therefore, v₁/v₂ = (Mass of the tennis ball)/(Mass of the basketball)
Hydrogen gas is harmless to your feet so since you don’t need protection against it that seems the best answer.