Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M
::Answer::
The answer you're looking for is Electrical Energy.
Answer:
Ok I'm not 100% on this one but, try 3 lifes sorry if u get it wrong D:
Explanation:
Answer:
A. the speed of a reaction
Explanation:
The thermodynamic aspect of a reaction will show you the energy needed for a reaction to occur. If the energy difference(ΔG) is positive, which means the reaction is absorbing energy and it called endothermically. The opposite will be an exothermic reaction that will release energy, which means it doesn't need energy and the energy difference (ΔG) will be negative.
Thermodynamic can be used to determine a few things of a reaction, like the direction of the reaction, the extent, or temperature in which the reaction is spontaneous. But thermodynamic not used to find the speed of a reaction.
Answer:
new temperature of the tire will be 278.76 K
Explanation:
when the temperature increases, the particles will have greater kinetic energy and also the pressure will be increase for the gas particles.
so when the temperature increases, pressure will also increase and vice versa
T is directly proportional to P
T1 = initial temperature= 303 k
P1= Initial pressure = 325000 pa
T2= Final temperature= ?
P2= Final pressure = 299000 pa
mathematically
P1/T1= P2/T2
T2= P2 x T1/P1
T2 = 299000 x 303/ 325000= 278.76 k