<span>The loudness of the sound increases gradually as the air is slowly introduced in to the jar. This is because sound needs a physical medium and in a vacuum there is none. The air provides that medium and as it is introduced, the transfer of sound energy increases</span>
1140x9.8x2.4= 26,812.8 significant figures Make it 27,000
B.---A. warm water B. thermocline C. cold water
Answer:
denser media the speed is greater
Explanation:
The speed of sound is given by the relation

where B is the volume modulus and ρ the density of the medium
When analyzing the previous expression, the amplitude of the sound depends on the energy carried by the wave.
Wave speed, is given by the relationship between two magnitudes, we analyze their values for different media. The volume modulus for gases has values of the order of 10⁵ Pa, for liquids of the order of 10⁹ Pa and for solids of 10¹⁰ to 10¹¹ Pa, while the density has values of the order of 10⁻¹ to 10⁰ kg / m³ for gases for liquids 10³ kg / m³ and for solids of the order of 10³ to 10⁴ kg / m³
let's find the order of magnitude of the speed of sound
Gases
v =√ 10⁵/10⁰ = 300 m / s
liquids
v =√ 10⁹/10³ = 1000 m / s
solid
v = √ 10¹¹/ 10⁴ = 3000 m / s
We can see that in denser media the speed is greater
<span>Plug in 288 for h, move it over to the right side and do the quadratic formula to solve for t. You will get 2 times, in between and including those times will give you the period it is at least 288 ft off the ground.
</span>You can simplify this and not need to use the quadratic.
<span>288=−16<span>t^2</span>+144t
</span><span>Divide through by 16 getting
18=-t^2 + 9t
</span><span><span>t^2</span>−9t+18=0</span><span> Is what you would get after rearranging the equation Now you have something you can easily factor</span><span>
</span>