Answer:
To summarize, <em><u>Jane's star</u></em> has a <em><u>red</u></em> light and <em><u>is traveling towards</u></em> the <em><u>Earth</u></em> while <em><u>John's star </u></em>has a <em><u>blue</u></em> light and <em><u>is traveling away</u></em> from the <em><u>Earth</u></em>. This is a <em><u>prime example</u></em> of the <em><u>Doppler Effect</u></em> in <em><u>motion</u></em>. The stars <em><u>look different </u></em>because <em><u>they are traveling in different directions.</u></em>
To solve this problem it is necessary to apply the concepts related to the Period based on the length of its rope and gravity, mathematically it can be expressed as

g = Gravity
L = Length
T = Period
Re-arrange to find the gravity we have

Our values are given as

Replacing we have



Therefore the correct answer is C.
The weight of a column of air with cross-sectional area 4. 5 m^2 extending from earth's surface to the top of the atmosphere is, 4.56*10^5N.
To find the answer, we have to know about the pressure.
<h3>How to find the weight of a column of air?</h3>
- As we know that the expression of pressure as,

where; F is the force, here it is equal to the weight of the air column, and A is the area of cross section.
- It is given that, the air column is extending from earth's surface to the top of the atmosphere, thus, the pressure will be atmospheric pressure,

- From this, the value of weight will be,

Thus, we can conclude that, the weight of a column of air with cross-sectional area 4. 5 m^2 extending from earth's surface to the top of the atmosphere is, 4.56*10^5N.
Learn more about the pressure here:
brainly.com/question/12830237
#SPJ4