first we make a U turn and travel towards home in t = 20 s
so the distance of home from initial position is


Now after picking up the book we travel back with speed 20 m/s
so again after t = 20 s the displacement is given as

so the net displacement is given as


so it will be displaced by total displacement 200 m
Answer:
<h2>25000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 5000 × 5
We have the final answer as
<h3>25000 N</h3>
Hope this helps you
Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall
Answer:
Explanation:
Physics gets involved in your daily life right from you wake up in the morning. The buzzing sound of an alarm clock helps you wake up in the morning as per your schedule. The sound is something that you can't see, but hear or experience. Physics studies the origin, propagation, and properties of sound
Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A