Answer:
a, and f.
Explanation:
To be deprotonated, the conjugate acid of the base must be weaker than the acid that will react, because the reactions favor the formation of the weakest acid. The pKa value measures the strength of the acid. As higher is the pKa value, as weak is the acid. So, let's identify the conjugate acid and their pKas:
a. NaNH2 will dissociate, and NH2 will gain the proton and forms NH3 as conjugate acid. pKa = 38.0, so it happens.
b. NaOH will dissociate, and OH will gain the proton and forms H2O as conjugate acid. pKa = 14.0, so it doesn't happen.
c. NaC≡N will dissociate, and CN will gain a proton and forms HCN as conjugate acid. pKa = 9.40, so it doesn't happen.
d. NaCH2(CO)N(CH3)2 will dissociate and forms CH3(CO)N(CH3)2 as conjugate acid. pKa = -0.19, so it doesn't happen.
e. H2O must gain one proton and forms H3O+. pKa = -1.7, so it doesn't happen.
f. CH3CH2Li will dissociate, and the acid will be CH3CH3. pKa = 50, so it happens.
An ecosystem is a geographic area where plants, animals, and other organisms, as well as weather and landscape, work together to form a bubble of life. Ecosystems contain biotic or living, parts, as well as abiotic factors, or nonliving parts. Biotic factors include plants, animals, and other organism .
Answer:
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
Explanation:
According to Brönsted-Lowry acid-base theory, an acid is a substance that donates H⁺. Let's consider the molecular equation showing that benzoic acid is a Brönsted-Lowry acid.
C₆H₅COOH(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The complete ionic equation includes all the ions and molecular species.
C₆H₅COO⁻(aq) + H⁺(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)