Answer:
the liquid has less height than the mercury
h_{ liquid} = 
Explanation:
The pressure as a function of the height is given by
P = ρ g h
where ρ is the density of the liquid, g the acceleration of gravity and h the height reached by the column of the liquid
In that case they say that the pressure is the standard one that is P = 1.01 10⁵ Pa = 760 mmHg
The first way to give the pressure is in SI units and the second way is the height that the mercury column reaches
In the case of building a barometer with a liquid that has a density greater than that of mercury
ρ_liquid > ρ_Hg
the pressure
P =ρ_lquid g h_liquid
if we have the same pressure
ρ_{Hg} g h_{Hg} = ρ_{liquid} g h_{liquid}
h_{ liquid} =
therefore the liquid has less height than the mercury
Answer:
Their efforts would be expressed in units of Joules per second
Explanation:
The unit of their efforts can be derived from the formula of power which is given by the product of mass, acceleration and distance (the product is energy with unit joules) divided by time taken to complete the task (unit is seconds)
Therefore, the unit of their efforts would be joules per second
By definition, we have to:
Newton's first law states that any object will remain in a state of rest or with a uniform rectilinear motion unless an external force acts on it.
Therefore, according to the first law of Newton, if the object is already in motion and has no force acting on it then, it will remain with a uniform rectilinear motion.
Answer:
The object will remain with a uniform rectilinear movement when the external force does not act on it.
Answer:
- The energy that must be added to the electron to move it to the third excited state is -1.153 eV
- The energy that must be added to the electron to move it to the fourth excited state is -1.181 eV
Explanation:
Given;
Energy of electron in ground state (n = 1 ) = 1.23 eV
E₁ = 1.23 eV
Eₙ = E₁ /n²
where;
E₁ is the energy of the electron in ground state
n is the energy level,
For third excited state, n = 4
E₄ = E₁ /4²
E₄ = (1.23 eV) / 16
E₄ = 0.077 eV
Change in energy level, = E₄ - E₁ = 0.077 eV - 1.23 eV = -1.153 eV
The energy that must be added to the electron to move it to the third excited state is -1.153 eV
For fourth excited state, n = 5
E₅ = E₁ /5²
E₄ = (1.23 eV) / 25
E₄ = 0.049 eV
Change in energy level, = E₅ - E₁ = 0.049 eV - 1.23 eV = -1.181 eV
The energy that must be added to the electron to move it to the fourth excited state is -1.181 eV