20waves/57.1s = 0.350 Hz
thank you!
Hello, Ayalaarianna6otpduy!
I believe your answer is Speed!
Glad I Could Help, And Good Luck!
~AnonymousGiantsFan~
Given:
u = 10⁵ m/s, the entrance velocity
v = 2.5 x 10⁶ m/s, the exit velocity
s = 1.6 cm = 0.016 m, distance traveled
Let a = the acceleration.
Then
u² + 2as = v²
(10⁵ m/s)² + 2*(a m/s²)*(0.016 m) = (2.5 x 10⁶ m/s)²
0.032a = 6.25 x 10¹² - 10¹⁰ = 6.24 x 10¹²
a = 1.95 x 10¹⁴ m/s²
Answer: 1.95 x 10¹⁴ m/s²
Answer:
The change in the mechanical energy of the projectile is 43,750 J
Explanation:
Given;
mass of the projectile, m = 5 kg
initial velocity of the projectile, u = 200 m/s
final velocity of the projectile, v = 150 m/s
The change in mechanical energy is calculated from the principle of conservation of energy;
ΔP.E = ΔK.E
The change in potential energy is zero (0)
0 = ΔK.E
ΔK.E = K.E₁ - K.E₂
ΔK.E = ¹/₂mu² - ¹/₂mv²
ΔK.E = ¹/₂m(u² - v²)
ΔK.E = ¹/₂ x 5(200² - 150²)
ΔK.E = 43,750 J
Therefore, the change in the mechanical energy of the projectile is 43,750 J