1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
12

Which of the following are thought to be rapidly rotating neutron stars with intense magnetic fields? Choose one answer.

Physics
1 answer:
evablogger [386]3 years ago
6 0
The answer is d flare stars
You might be interested in
What do you think explains the pattern of planet density in the solar system
MrMuchimi

Answer:

If density is greater, the object sinks. Saturn is mainly composed of the lightest two gases known, hydrogen and helium. It is the only planet in our solar system whose density is less than water

Explanation:

5 0
3 years ago
Read 2 more answers
A boy can swim 3.0 meter a second in still water while trying to swim directly across a river from west to east, he is pulled by
lana66690 [7]

Answer:

Angle: 48.19^o

Explanation:

<u>Two-Dimension Motion</u>

When the object is moving in one plane, the velocity, acceleration, and displacement are vectors. Apart from the magnitudes, we also need to find the direction, often expressed as an angle respect to some reference.

Our boy can swim at 3 m/s from west to east in still water and the river he's attempting to cross interacts with him at 2 m/s southwards. The boy will move east and south and will reach the other shore at a certain distance to the south from where he started. It happens because there is a vertical component of his velocity that is not compensated.

To compensate for the vertical component of the boy's speed, he only has to swim at a certain angle east of the north (respect to the shoreline). The goal is to make the boy's y component of his velocity equal to the velocity of the river. The vertical component of the boy's velocity is

v_b\ cos\alpha

where v_b is the speed of the boy in still water and \alpha is the angle respect to the shoreline. If the river flows at speed v_s, we now set

v_b\ cos\alpha=v_s

\displaystyle cos\alpha=\frac{v_s}{v_b}=\frac{2}{3}

\alpha=48.19^o

8 0
3 years ago
You have a meteorite sample and you decide to use the uranium-235/lead-207 system to date it. After analysis, you find that it h
storchak [24]

Originally there must been

1,4775E6 + 2.25E4 = 147.75E4 + 2.25E4 = 150E4 present at start

% = 2.25 / 150 = 1.5 %      of 235 U left

5 0
2 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
Could you please explain to me Newton's second law of motion? Please I don't get it :/
MissTica

Answer:

Newton's second law states that when a body of mass m is accelerated with force f

then F=ma

this means acceleration of an object depends on both force with which it is moving as well as its mass

8 0
3 years ago
Other questions:
  • Monitoring systems may use ____, which are devices that respond to a stimulus (such as heat, light, or pressure) and generate an
    12·1 answer
  • Advantages of hubble law
    5·1 answer
  • In the Earth's mantle, heat is transferred in large convection currents. Within these currents,
    7·2 answers
  • The curved movement of air or water is the result of which of these?
    14·2 answers
  • Imagine that a machine enables you to do 100 joules of work with a force input of 20 newtons. Now imagine that a new machine is
    5·1 answer
  • A 1840-kg car travels on a banked, horizontal curve of diameter 225 m. Find the maximum safe speed if the coefficient of frictio
    11·1 answer
  • Jane is a crime scene investigator. She wants to reveal small particles with high contrast. So, she positions the forensic lamp
    7·1 answer
  • Can someone help me pls!!
    9·1 answer
  • Can someone help please
    12·1 answer
  • You carry a 20 N bag of dog food up a 6.0 m flight of stairs. How much work was done?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!