Answer:
E = 2k 
Explanation:
Gauss's law states that the electric flux equals the wax charge between the dielectric permeability.
We must define a Gaussian surface that takes advantage of the symmetry of the problem, let's use a cylinder with the faces perpendicular to the line of charge. Therefore the angle between the cylinder side area has the same direction of the electric field which is radial.
Ф = ∫ E . dA = E ∫ dA = q_{int} /ε₀
tells us that the linear charge density is
λ = q_ {int} /l
q_ {int} = l λ
we substitute
E A = l λ /ε₀
is area of cylinder is
A = 2π r l
we substitute
E =
E =
the amount
k = 1 / 4πε₀
E = 2k 
Answer:
The Heavier Firefighter
Explanation:
Generally, more massive objects will have more intertia than less massive objects. As such it takes more force to halt a more massive object if its moving at the same speed as a smaller object. This can also be thought of in the context of Newton's second law. The more force needed to accelerate an object means the more force the object will have.
The body will take 20 seconds to cover a distance of 1000 m i.e. 1 km
Answer:

Explanation:
The formula for the force exerted between two charges is

where k is the Coulomb constant.
The charges are identical, so we can write the formula as


Answer:
Option C
Explanation:
Kinetic energy is the energy that the body possesses by virtue of its motion.
The formula for Kinetic energy is given by 
Using this formula let us find kinetic energy for the bodies given and find out which is the greatest
A) KE = 
B) KE =
C) KE = 
D) KE = 
Comparing these we find that 9mv^2 is the highest.
Hence option C is the answer.