The percentage of light gets through three successive polarized filters is 24.9 %
From the question,
Given that,
Angle of transmission axis = 32.8°
The intensity of light emerging from the first polarizer is determined by the equation
I₁ = I₀ / 2
where I₀ ⇒ intensity of unpolarized light
The light emerging from the second polarizer can be mathematically represented by,
I₂ = I₁ x cos²θ
Substituting the values,
I₂ =( I₀/2) x cos²θ
= (I₀/2) x cos² (32.8 )
= (I₀/2) x 0.706
= (0.706 / 2 ) x I₀
The light emerging from the third polarizer is represented as,
I₃ = I₂ x cos²θ
Substituting the values in the above equation,
I₃ = ( 0.706 / 2 ) I₀ x cos² (32.8)
= (0.706 / 2 ) I₀ x 0.706
= 0.249 I₀
The percentage of intensity of light that gwts through with respect to the intensity of unpolarized light is given by the equation,
(I₃ / I₀) x 100
Substituting the values
[(0.249 x I₀) / I₀ ] x 100 = 24.9 %
Hence the percentage of light gets through is 24.9%
To learn more about unpolarized light: brainly.com/question/17164167
#SPJ4
Answer:

Explanation:

where m is the mass, g is acceleration due to gravity
The masses m are on both sides hence they cancel

We know that T=2\pi W and substituting W with the above equation then

<span>Reflection
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated.</span>
Answer:
H / R = 2/3
Explanation:
Let's work this problem with the concepts of energy conservation. Let's start with point P, which we work as a particle.
Initial. Lowest point
Em₀ = K = 1/2 m v²
Final. In the sought height
= U = mg h
Energy is conserved
Em₀ =
½ m v² = m g h
v² = 2 gh
Now let's work with the tire that is a cylinder with the axis of rotation in its center of mass
Initial. Lower
Em₀ = K = ½ I w²
Final. Heights sought
Emf = U = m g R
Em₀ =
½ I w² = m g R
The moment of inertial of a cylinder is
I =
+ ½ m R²
I= ½
+ ½ m R²
Linear and rotational speed are related
v = w / R
w = v / R
We replace
½
w² + ½ m R² w² = m g R
moment of inertia of the center of mass
= ½ m R²
½ ½ m R² (v²/R²) + ½ m v² = m gR
m v² ( ¼ + ½ ) = m g R
v² = 4/3 g R
As they indicate that the linear velocity of the two points is equal, we equate the two equations
2 g H = 4/3 g R
H / R = 2/3
Answer:
(a) 
(b) The force is repulsive
Explanation:
a) According to Coulomb's law, the magnitude of the electrice force that one particle exerts on the other is defined as:

Here k is the coulomb constant,
and
are the signed magnitudes of the charges and d is the distance between them.

b) According to Coulomb's law, if the two charges have the same sign, the electrostatic force between them is repulsive.