1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexdok [17]
3 years ago
15

If you have a mechanical advantage of 2 with a block and tackle system.  How much force do you have to pull with?

Physics
1 answer:
Dovator [93]3 years ago
7 0

Answer:

Half

Explanation:

You only have to exert a force equal to half the weight of the load to lift it.

You might be interested in
Most people can hear sound of pitch raning from to hertz​
MrMuchimi
Since our earlobes repeatedly bounce from our inner ear twords the eardrums, this is compeltely true.
4 0
3 years ago
Assume that when you stretch your torso vertically as much as you can, your center of mass is 1.0 m above the floor. The maximum
Elenna [48]

1) 0.77 m

2) 0.23 m

Explanation:

1)

Here we want to find the time elapsed for crouching in order to jump and reach a height of 2.0 m above the floor, starting from 1.0 m above the floor.

First of all, we start by calculating the speed required to jump up to a height of 2.0 m. Since the total energy is conserved, the initial kinetic energy is converted into gravitational potential energy, so:

\frac{1}{2}mv^2 = mgh

where

m is the mass of the man

v is the speed after jumping

g=9.8 m/s^2 is the acceleration due to gravity

h = 2.0 - 1.0 = 1.0 m is the change in height

Solving for v,

v=\sqrt{2gh}=\sqrt{2(9.8)(1.0)}=4.43 m/s

In the acceleration phase, we know that the initial velocity is

u=0

And the force exerted on the floor is 2.3 times the gravitational force, so

F=2.3 mg

This means the net force on you is

F_{net} = F-mg=2.3mg-mg=1.3 mg

because we have to consider the force of gravity acting downward.

So the acceleration of the man is

a=\frac{F_{net}}{m}=\frac{1.3mg}{m}=1.3g

Now we can use the  following suvat equation to find the displacement in the acceleration phase, which is how low the man has to crouch in order to jump:

v^2-u^2=2as

where s is the quantity we want to find. Solving for s,

s=\frac{v^2-u^2}{2a}=\frac{4.43^2-0}{2(1.3g)}=0.77 m

2)

At the beginning, we are told that the height of the center of mass above the floor is

h = 1.0 m

During the acceleration phase and the crouch, the height of the center of mass of the body decreases by

\Delta h = -0.77 m

This means that the lowest point reached by the center of mass above the floor during the crouch is

h'=h+\Delta h = 1.0 - 0.77 = 0.23 m

This value seems unpractical, since it is not really easy to crouch until having the center of mass 0.23 m above the ground.

3 0
3 years ago
Describe the two types of comet tails and how each are formed.
sesenic [268]
There are two main types of cometary tails: the ion and dust tail.

NOTE: you can use quizlet, is helps out a lot

6 0
3 years ago
What type of forces accelerate masses?
leva [86]

Answer:

i would say that the answer would be B

5 0
3 years ago
Carbon-14 is used to determine the time an organism was living. The amount of carbon-14 an organism has is constant with the atm
lutik1710 [3]

Answer:

The age of the organism is approximately 11460 years.

Explanation:

The amount of carbon-14 decays exponentially in time and is defined by the following equation:

\frac{n(t)}{n_{o}} = e^{-\frac{t}{\tau} } (1)

Where:

n_{o} - Initial amount of carbon-14.

n(t) - Current amount of carbon-14.

t - Time, measured in years.

\tau - Time constant, measured in years.

Then, we clear the time within the formula:

t = -\tau \cdot \ln \frac{n(t)}{n_{o}} (2)

In addition, time constant can be calculated by means of half-life of carbon-14 (t_{1/2}), measured in years:

\tau = \frac{t_{1/2}}{\ln 2}

If we know that \frac{n(t)}{n_{o}} = 0.25 and t_{1/2} = 5730\,yr, then the age of the organism is:

\tau = \frac{5730\,yr}{\ln 2}

\tau \approx 8266.643\,yr

t = -(8266.643\,yr)\cdot \ln 0.25

t \approx 11460.001\,yr

The age of the organism is approximately 11460 years.

8 0
3 years ago
Read 2 more answers
Other questions:
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    12·1 answer
  • Who was the first head of the NASA space program was Sergei Korolov, but the Russians never identified him by name. What did the
    9·1 answer
  • MULTIPLE CHOICE
    13·2 answers
  • A ball is dropped from 215m. How long will it take to reach the ground? Use 9.8
    11·1 answer
  • How to separate a mixture of iron ad copper pieces using an electromagent​
    6·1 answer
  • Queremos diseñar un montacargas que pueda subir con una rapidez de 12 km/h una mas 700 kg hasta 40 m de altura en un minuto. Cal
    7·1 answer
  • How to be good at rocket league
    13·2 answers
  • What are vernier callipers?​
    6·2 answers
  • If the net force is 7 what is the magnitude
    15·1 answer
  • Which of the following statements is true?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!