Answer:
0.853 m/s
Explanation:
Total energy stored in the spring = Total kinetic energy of the masses.
1/2ke² = 1/2m'v².................... Equation 1
Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.
make v the subject of the equation,
v = e[√(k/m')].................... Equation 2
Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.
Substitute into equation 2
v = 0.39[√(1.75/0.8)
v = 0.39[2.1875]
v = 0.853 m/s
Hence the speed of each mass = 0.853 m/s
Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;

Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.
Answer:
30 m
Explanation:
The wavelength of a wave is found by the velocity divided by the frequency. Therefore, the wavelength is (300 m/s)/(10 Hz) = 30 m
I hope this helps! :)