Apart from cutaneous respiration<span> present in all </span>species<span>, most lissamphibians are born in an aquatic larval stage with gills. After metamorphosis, they develop lungs to breathe on land. The larvae of urodeles and apods present external, filamentous and highly branched gills which allow them to breathe underwater.
</span>
Pupils dilate and constrict in order to allow an adequate amount of light to pass through the retina and vision. If there is not enough light and the pupils do not dilate, a small amount of light will pass to the retina and the vision will be damaged.
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Assuming Adam is on earth g= 9.8 m/s and m= weight/ gravity = 667/9.8 = 68 kg
Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 