Speed = Distance ÷ Time
Speed = 116 ÷ 29
Speed = 4
The potential energy of the block is given by:
V = m*g*h
m mass
g = 9.81m/s²
h height
The potential energy of a spring is given by:
V = 0.5 * k * x²
k spring constant
x compression of the spring
If the block starts from rest it has potential energy, but no kinetic energy. As it slides down the incline potential energy is converted into kinetic energy. When the block hits the spring the kinetic energy is converted into spring's potential energy. If the spring is fully compressed and the block is at rest again, the block has transferred all its energy into the spring. No energy is lost. So we can write:
m * g * h = 0.5 * k * x²
m = 0.5 kg
g = 9.81 m/s²
h = 2.5m * sin 37° = 1,5 m
x = 0,6 m
Solve for k.
k = 2 * m * g * h / x² = 40.8 N/m
Answer:
The potential energy at point A is 17.1675 J
Explanation:
The capillary potential is the work expended to bring up a unit mass of liquid to a point in a capillary region from a level liquid surface. It is the capillary potential that facilitates the movement of moisture within soil capillaries
In meteorology it is used to describe the level of saturated soil above the water table
Potential energy is the energy inherent in a body by virtue of its position, therefore the potentials of both point A and B are
Point A, elevation = 75 cm capillary potential = -100 cm
Point B, elevation = 25 cm capillary potential = -200 cm
The total potential energy at point A is
Elevation above reference - capillary potential =75-(-100) = 175 cm
which gives per unit mass
PE = m × g × h = 1 kg × 9.81 m/s ² × 1.75 m = 17.1675 kg·m²/s² = 17.1675 J
A machine that is interesting will be the homework machine. The way it works is you put your homework inside a slot, and you have to write any three letter word so the machine knows what handwriting to use. In 2 minutes your homework will be complete in your writing.
Answer: 0K
Explanation:
Absolute 0 (0K) is the point where nothing could be colder and no heat energy remains in a substance.