Answer:
Explanation:
a ) Slit separation d = .1 x 10⁻³ m
Screen distance D = 4 m
wave length of light λ = 650 x 10⁻⁹ m
Width of central fringe = λ D / d
= 
= 26 mm
b ) Distance between 1 st and 2 nd bright fringe will be equal to width of dark fringe which will also be equal to 26 mm
c ) Angular separation between the central maximum and 1 st order maximum will be equal to angular width of fringe which is equal to
λ / d
= 
= 6.5 x 10⁻³ radian.
Velocity is d/t distance over time. Increase velocity (speed) decrease. Increase d velocity increases.
If it's not moving at all at the beginning of the 10 seconds, then it falls 490 meters straight down in 10 seconds.
(Note: This is true of all objects on Earth . . . rubber balls, feathers, grains of sand, school buses, battle ships . . . everything. As long as air doesn't hold them back. Anything falling from rest falls 490 meters in the first 10 seconds.)
Answer:
2.35 kgm^2
Explanation:
we take length 68.7 cm as x-axis and 47.5 cm as y-axis then the axis about which we have to find out moment of inertia will be z-axis.
moment of inertia about x-axis
kg-m2

by perpendicular axis theorem

Answer:
The separation between the charges was decreased by a factor of 0.2
Explanation:
The Coulomb's force between two charges is given by;

r₂ = 0.2r₁
Therefore, the separation between the charges was decreased by a factor of 0.2.