Answer:
a.) the speed at the bottom is greater for the steeperhill
Explanation:
since the energy at the bottom of the steeper hilis greater

As we can see from above that v is higher when h ishigher.
Answer:
a) ω = 9.86 rad/s
b) ac = 194. 4 m/s²
c) minimum coefficient of static friction, µs = 19.8
Explanation:
a) angular speed, ω = 2πf, where f is frequency of revolution
1 rps = 6.283 rad/s, π = 3.142
ω = 2 * 3.14 * 0.25 * 6.28
ω = 9.86 rad/s
b) centripetal acceleration, a = rω²
where r is radius in meters; r = 200 cm or 2 m
a = 2 * 9.86²
a = 194. 4 m/s²
c) µs = frictional force/ normal force
frictional force = centripetal force = ma; where a is centripetal acceleration
normal force = mg; where g = 9.8 m/s²
µs = ma/mg = a/g
µs = 194.4 ms⁻²/9.8 ms⁻²
c) minimum coefficient of static friction, µs = 19.8
One situation in which force is created is when an object is moving and a force is created to stop that movement. Second situation is when an object is moving circularly and a force is created to move it towards the middle of the circle. The third situation is when a force is created that goes in the same direction as an object that is in movement.
75 percent off of water and please water the light water and water water and then go back and please water pollution please 880m
Given a = 10 cm/s²
u = 0 cm/s
v = 50 cm/s
we know that
v²=u²+2aS
2500=2×10×S
2500÷20 = S
S= 125 cm
The ramp is 125 cm