Answer:9.8 m/s²
Explanation:
It was going at 9.8m/s² as this is the acceleration of an object due to gravity
when an object falls it accelerates at a consant and uniform speed which is 9.8m/s²
Answer:

Explanation:
Hello,
In this case, since we compute the required energy via:

Whereas m is the mass which here is 70 g, C the specific heat which for water is 4.184 J/(g°C) and ΔT is the temperature difference which is:

Therefore, the energy turns out:

Best regards.
Static friction is what you are looking for.
Kinetic friction is the force exerted on an already moving object, slowing it down.
Answer:
Transverse wave- Back and forth at right angles to the direction of the wave arrow.
longitudinal wave- bask and forth in the direction of the motion of the motion of the wave.
electromagnetic wave- two alternating waves moving at right angles to each other.
Explanation:
In a longitudinal wave, the particles vibrate at right angles in reference to the wave motion.
In a transverse wave, the particles vibrate parallel to the wave motion
Electromagnetic waves occur as a result of the interaction between two waves and are normally transverse in nature.
Explanation:
For air, n1 = 1.00003; for water, n2 = 1.3330
Given: θ2 = 30 degrees, then
θ1 = arcsin [(n2/n1) sin θ2]
= arcsin [(1.3330/1.0003) sin (40)]
= 58.93 degrees
Note that since, in this example, light is traveling from a medium of higher density (water; n2 = 1.3330) to a medium of lower density (air; n1 = 1.0003), then n2 > n1, and the angle of refraction (θ1) is larger than the angle of incidence (θ2), thus the light bends away from the normal (in this example, the vertical) as it leaves the water and enters the air.