(a) The equation for the work done in stretching the spring from x1 to x2 is ¹/₂K₂Δx².
(b) The work done, in stretching the spring from x1 to x2 is 11.25 J.
(c) The work, necessary to stretch the spring from x = 0 to x3 is 64.28 J.
<h3>
Work done in the spring</h3>
The work done in stretching the spring is calculated as follows;
W = ¹/₂kx²
W(1 to 2) = ¹/₂K₂Δx²
W(1 to 2) = ¹/₂(250)(0.65 - 0.35)²
W(1 to 2) = 11.25 J
W(0 to 3) = ¹/₂k₁x₁² + ¹/₂k₂x₂² + ¹/₂F₃x₃
W(0 to 3) = ¹/₂(660)(0.35)² + ¹/₂(250)(0.65 - 0.35)² + ¹/₂(105)(0.89 - 0.65)
W(0 to 3) = 64.28 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
You have to add 1.7 and 2.2 together!
1.7+2.2=3.9μF
The concave mirror is a spherical-shaped mirror that has an inner curved surface. Hence, option (4) is correct.
What is a concave mirror?
The concave mirrors are spherical-shaped mirrors that are painted on the outward surface. It is also known as the converging mirror, having the recessed inner reflecting surface.
- The concave mirrors are generally used for the purpose to focus the light. For that, they might have a reflecting surface, curved inwards, and the reflection of light is limited to the single focal point.
- The reflecting surface of the concave mirror has its vertex or midpoint lying farther away from the objects than the edges.
Thus, we can conclude that the surface of the concave mirror is curved inward. Hence, option (4) is correct.
Learn more about the concave mirror here:
brainly.com/question/13300307
Answer:
The electron cloud
Explanation:
Metallic bonds result from interaction of positively charged metal ions with free valence electrons which now forms an electron cloud around the metal ions. Electrostatic interaction between the metal ions and the electron cloud holds the metal ions together in the metallic bond.