Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>
Explanation:
p=mv
p=5.6×75
p= 420
<em>hope</em><em> it</em><em> was</em><em> helpful</em><em> to</em><em> you</em>
Answer:
In the present study, the startle blink reflex is used as a measure of emotion regulation to effective picture stimuli. Based on the aphasic theory of emotion, it is hypothesized that the startle response will be largest in magnitude in the presence of negative emotional stimuli (Varanasi, Spence, & Lang, 1988).
Answer:
General perception: Physics is harder than Mathematics. Why? Physics might be more challenging because of the theoretical concepts, the mathematical calculations, laboratory experiments and even the need to write lab reports.
Explanation: