What are the answer choices?
Answer:
The molecular formula of glucose is C₆H₁₂O₆
Explanation:
Empirical formula:
It is the simplest formula gives the ratio of smallest whole number of atoms.
Molecular formula:
It gives the total number of atoms in a molecule of compound.
The molecular formula and empirical formula can be related as follow:
Molecular formula = n × empirical formula
Given data:
Empirical formula = CH₂O
Molecular formula = ?
It is stated in given problem that molecular formula is the 6 times of the empirical formula.
Molecular formula = n × empirical formula
Molecular formula = 6 × CH₂O
Molecular formula = C₆H₁₂O₆
The molecular formula of glucose is C₆H₁₂O₆.
Answer:
Statements Y and Z.
Explanation:
The Van der Waals equation is the next one:
(1)
The ideal gas law is the following:
(2)
<em>where n: is the moles of the gas, R: is the gas constant, T: is the temperature, P: is the measured pressure, V: is the volume of the container, and a and b: are measured constants for a specific gas. </em>
As we can see from equation (1), the Van der Waals equation introduces two terms that correct the P and the V of the ideal gas equation (2),<u> by the incorporation of the intermolecular interaction between the gases and the gases volume</u>. The term an²/V² corrects the P of the ideal gas equation since the measured pressure is decreased by the attraction forces between the gases. The term nb corrects the V of the ideal gas equation, <u>taking into account the volume occuppied by the gas in the total volume, which implies</u> a reduction of the total space available for the gas molecules.
So, the correct statements are the Y and Z: the non-zero volumes of the gas particles effectively decrease the amount of "empty space" between them and the molecular attractions between gas particles decrease the pressure exerted by the gas.
Have a nice day!
Answer:
Hope this helps D.
Explanation:
During cellular respiration, glucose is broken down in the presence of oxygen to produce carbon dioxide and water. Energy released during the reaction is captured by the energy-carrying molecule ATP (adenosine triphosphate).
Answer:
Doggy
Explanation: Its more exotic :)