1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
12

What is terminal velocity and when is it reached?

Physics
1 answer:
Ne4ueva [31]3 years ago
8 0
Terminal velocity is the velocity at which a falling body experience when its weight is equal to the force resistance of force opposing the fall.

At terminal velocity the acceleration of the body is zero, which implies that the value of the this velocity is a uniform. 
You might be interested in
A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A
Sphinxa [80]

Answer:

Density of 127 I = \rm 1.79\times 10^{14}\ g/cm^3.

Also, \rm Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

Explanation:

Given, the radius of a nucleus is given as

\rm r=kA^{1/3}.

where,

  • \rm k = 1.3\times 10^{-13} cm.
  • A is the mass number of the nucleus.

The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

\rm \rho = \dfrac{M}{V}=\dfrac{M}{\dfrac 43 \pi r^3}=\dfrac{M}{\dfrac 43 \pi (kA^{1/3})^3}=\dfrac{M}{\dfrac 43 \pi k^3A}.

For the nucleus 127 I,

Mass, M = \rm 2.1\times 10^{-22}\ g.

Mass number, A = 127.

Therefore, the density of the 127 I nucleus is given by

\rm \rho = \dfrac{2.1\times 10^{-22}\ g}{\dfrac 43 \times \pi \times (1.3\times 10^{-13})^3\times 127}=1.79\times 10^{14}\ g/cm^3.

On comparing with the density of the solid iodine,

\rm \dfrac{Density\ of\ ^{127}I}{Density\ of\ the\ solid\ iodine}=\dfrac{1.79\times 10^{14}\ g/cm^3}{4.93\ g/cm^3}=3.63\times 10^{13}.\\\\\Rightarrow Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

7 0
3 years ago
A satellite s is moving in an elliptical orbit around the earth . the mass of satellite is very small compared to mass of earth.
Contact [7]
The best and most correct answer among the choices provided by your question is the second choice or letter B.

<span>A satellite (s) is moving in an elliptical orbit around the earth has its angular momentum towards the earth changing in direction, but not in magnitude.</span>

I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
8 0
3 years ago
Explain why a moving object cannot come to a stop instantaneously (in zero seconds). Hint: Think about the acceleration that wou
gizmo_the_mogwai [7]
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
7 0
4 years ago
According to Newton's Law of Cooling, if a body with temperature T 1 is placed in surroundings with temperature T 0, different f
Mila [183]

We can substitute the given values into the equation for T, given the surrounding temperature T0 = 0, initial temperature T1 = 140, constant k = -0.0815, and time t = 15 minutes.

T = 0 + (140 - 0)e^(-0.0815*15) = 140e^(-1.2225) = 41.23°F

3 0
3 years ago
Read 2 more answers
When will an object dropped from rest attain a speed of 30 m/s?
stich3 [128]
<h3><u>Answer</u> :</h3>

Initial velocity = zero (i.e., free fall)

Final velocity = 30m/s

Acceleration due to gravity = 10m/s²

For a body falling freely under the action of gravity, g is taken positive.

◈ <u>First equation of kinenatics</u> :

⇒ v = u + gt

⇒ 30 = 0 + 10t

⇒ t = 30/10

⇒ <u>t = 3s</u>

Hence, object will attain a speed of 30m/s after 3s.

8 0
4 years ago
Other questions:
  • Can the sum of the magnitudes of two vectors ever be equal to the magnitude of the sum of the same two vectors? If no, why not?
    5·1 answer
  • An electrician must decide between 3 heaters. The wire that she is using is rated 15A maximum, anything beyond that is a fire ha
    12·1 answer
  • A pendulum has 573 J of potential energy at the highest point of its swing. How much kinetic energy will it have at the bottom o
    13·1 answer
  • The number of energy levels to which an electron can jump depends on the
    11·1 answer
  • A bus starting from rest moves with a uniform acceleration for 2 minutes. If the velocity at the end of 2 minutes is 12 m/s, its
    6·1 answer
  • Over a time interval of 1.71 years, the velocity of a planet orbiting a distant star reverses direction, changing from +17.3 km/
    14·1 answer
  • The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of po
    12·1 answer
  • A 1400 kg car is moving at 33.8 m/s when a force is applied the opposite direction of the car's motion. The car slows down to 21
    12·1 answer
  • Two boxes are 8 cm apart. Which of the following should Janet do to decrease the gravitational force between the boxes?
    14·1 answer
  • If a capital letter R is seen in an ordinary mirror , what does it look like?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!