Answer:
0.087 m
Explanation:
Length of the rod, L = 1.5 m
Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.
time period, T = 3 s
the formula for the time period of the pendulum is given by
.... (1)
where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.
Moment of inertia of the rod about the centre of mass, Ic = mL²/12
By using the parallel axis theorem, the moment of inertia of the rod about the pivot is
I = Ic + md²

Substituting the values in equation (1)


12d² -26.84 d + 2.25 = 0


d = 2.15 m , 0.087 m
d cannot be more than L/2, so the value of d is 0.087 m.
Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.
A would be the wavelength, C would be a crest, D would be the amplitude, leaving B which is the trough.
Answer:
51.82
Explanation:
First of all, let's convert both vectors to cartesian coordinates:
Va = 36 < 53° = (36*cos(53), 36*sin(53))
Va = (21.67, 28.75)
Vb = 47 < 157° = (47*cos(157), 47*sin(157))
Vb = (-43.26, 18.36)
The sum of both vectors will be:
Va+Vb = (-21.59, 47.11) Now we will calculate the module of this vector:

If the amount of electrical energy is 50 Joules before the conversions, then it would be 50 Joules after the conversion.
According to law of conservation of energy, we cannot create or destroy energy so it remains constant
Hope this helps!
Answer:
Explanation:
The equation for momentum is p = mv; therefore,
p1 = 50(4) so
p1 = 200
p2 = 50(5) so
p2 = 250
The impulse, the change in the momentum, is 50, going in the same direction.