Explanation:
Pascal's principle, also called Pascal's law, in fluid (gas or liquid) mechanics, statement that, in a fluid at rest in a closed container, a pressure change in one part is transmitted without loss to every portion of the fluid and to the walls of the container.
The law of floatation states that, a floating body displaces its own weight of the fluid in which it floats.
Answer:
The temperature is 90.4°C
Explanation:
See the attached for explanation
Answer:
(a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Explanation:
Given that,
Angle of incidence = 30.0°
Index of reflection of glass = 1.52
(a). We need to calculate the angle of refraction for the ray inside the glass
Using snell's law


Put the value into the formula



(b). We know that,
The incident ray and emerging ray is equal then the ray will be parallel.
We need to prove that the rays in air on either side of the glass are parallel to each other
Using formula for emerging ray


Put the value into the formula



So, 
This is proved.
Hence, (a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Answer:
v = 14.32 m/s
Explanation:
According to the principle of conservation of linear momentum, both the momentum and kinetic energy of the system are conserved. Since the two balls are in the same direction of motion before collision, then;
+
= (
+
) v
0.035 × 12 + 0.120 × 15 = (0.035 + 0.120) v
0.420 + 1.800 = (0.155) v
2.22 = 0.155 v
⇒ v = 
= 14.323
The velocity of the balls after collision is 14.32 m/s.