<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
Answer:
Yes it will move and a= 4.19m/s^2
Explanation:
In order for the box to move it needs to overcome the maximum static friction force
Max Static Friction = μFn(normal force)
plug in givens
Max Static friction = 31.9226
Since 36.6>31.9226, the box will move
Mass= Wieght/g which is 45.8/9.8= 4.67kg
Fnet = Fapp-Fk
= 36.6-16.9918
=19.6082
=ma
Solve for a=4.19m/s^2
Answer:
24.8m/s
Explanation:
Given data
m1= 10kg
u1=25m/s
m2=17kg
u2=16m/s
v1=10m/s
v2=??
Applying the conservation of linear momentum
m1u1+m2u2=m1v1+m2v2
substitute
10*25+17*16=10*10+17*v2
250+272=100+17v2
522=100+17v2
522-100=17v2
422=17v2
Divide both sides by 17
v2= 422/17
v2= 24.8 m/s
Hence the velocity of the red cart is 24.8m/s in the opposite direction of the blue cart
6 meters is left because you subtract 12 meters from 6
Answer: The spring constant is K=392.4N/m
Explanation:
According to hook's law the applied force F will be directly proportional to the extension e produced provided the spring is not distorted
The force F=ke
Where k=spring constant
e= Extention produced
h=2m
Given that
e=20cm to meter 20/100= 0.2m
m=100g to kg m=100/1000= 0.1kg
But F=mg
Ignoring air resistance
assuming g=9.81m/s²
Since the compression causes the plastic ball to poses potential energy hence energy stored in the spring
E=1/2ke²=mgh
Substituting our values to find k
First we make k subject of formula
k=2mgh/e²
k=2*0.1*9.81*2/0.1²
K=3.921/0.01
K=392.4N/m