Answer:
0.093 mole of C₆H₁₂.
Explanation:
We'll begin by calculating the molar mass of C₆H₁₂. This can be obtained as follow:
Molar mass of C₆H₁₂ = (12×6) + (12×1)
= 72 + 12
= 84 g/mol
Finally, we shall determine the number of mole in 7.8 g of C₆H₁₂. This can be obtained as follow:
Molar mass of C₆H₁₂ = 84 g/mol
Mass of C₆H₁₂ = 7.8 g
Mole of C₆H₁₂ =?
Mole = mass / molar mass
Mole of C₆H₁₂ = 7.8 / 84
Mole of C₆H₁₂ = 0.093 mole
Thus, 7.8 g contains 0.093 mole of C₆H₁₂.
KE = mv²/2
m=2*KE/v²
v=50 m/s
KE=500J
m=2*KE/v² =2*500/50²=1000/2500= 0.4 kg
Answer:
The Avogadro's number is 
Explanation:
From the question we are told that
The edge length is 
The density of the metal is 
The molar mass of Ba is 
Generally the volume of a unit cell is

substituting value
![V = [5.02 *10^{-10}]^3](https://tex.z-dn.net/?f=V%20%3D%20%20%5B5.02%20%2A10%5E%7B-10%7D%5D%5E3)
From the question we are told that 68% of the unit cell is occupied by Ba atoms and that the structure is a metal which implies that the crystalline structure will be (BCC),
The volume of barium atom is

substituting value


The Molar mass of barium is mathematically represented as

Where
is the Avogadro's number
So

substituting value

