Answer:
The distance between the line of action of force and the axis of rotation (or pivoted point)
Explanation:
The distance between the line of action of force and the axis of rotation (or pivoted point) .
Radio waves have many uses—the category is divided into many subcategories, including microwaves and electromagnetic waves used for AM and FM radio, cellular telephones and TV.
The lowest commonly encountered radio frequencies are produced by high-voltage AC power transmission lines at frequencies of 50 or 60 Hz. These extremely long wavelength electromagnetic waves (about 6000 km) are one means of energy loss in long-distance power transmission.
Extremely low frequency (ELF) radio waves of about 1 kHz are used to communicate with submerged submarines. The ability of radio waves to penetrate salt water is related to their wavelength (much like ultrasound penetrating tissue)—the longer the wavelength, the farther they penetrate. Since salt water is a good conductor, radio waves are strongly absorbed by it; very long wavelengths are needed to reach a submarine under the surface.
HOPE THIS REALLY HELPS YOU.
THANK YOU.
You first subtract the speed at which the man is moving (11 m/s) from the rate the boat is moving (12.4 m/s). Which equals 1.4, then divide it by 6 meters, as the man is moving relative to the boat.
It therefore equals 4.29 s
Answer:
The potential energy when it reads 40 N is 
Explanation:
From the question we are told that
The lowest reading of the spring balance is 0 N and this is at 0 cm = 0 m
The height reading of the spring balance is 60 N and this is at 20 cm = 0.20 m
Generally the length corresponding to the reading of 40 N is mathematically represented as

=> 
Generally the potential energy is mathematically represented as

Here
So

=> 
Answer:
attractive toward +x axis is the net horizontal force
attractive toward +y axis is the net vertical force
Explanation:
Given:
- charge at origin,

- magnitude of second charge,

- magnitude of third charge,

- position of second charge,

- position of third charge,

<u>Now the distance between the charge at at origin and the second charge:</u>



<u>Now the distance between the charge at at origin and the third charge:</u>



<u>Now the force due to second charge:</u>


attractive towards +y
<u>Now the force due to third charge:</u>


attractive
<u>Now the its horizontal component:</u>

attractive toward +x axis
<u>Now the its vertical component:</u>

upwards attractive
Now the net vertical force:


