1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
13

A charge of -3.30 nC is placed at the origin of an xy-coordinate system, and a charge of 2.05 nC is placed on the y axis at y =

4.35 cm. If a third charge of 5.00nC, is placed at the point x=3.10cm, y=3.80cm find the x and y components of the total force exerted on the charge by two other charges
Physics
1 answer:
Elis [28]3 years ago
3 0

Answer:

F_{3h}=39065.298\times 10^9\ N attractive toward +x axis is the net horizontal force

F_v=80062.47\times 10^9 attractive toward +y axis is the net vertical force

Explanation:

Given:

  • charge at origin, Q_0=-3.35\times 10^{-6}\ C
  • magnitude of second charge, Q_2=2.05\times 10^{-6}\ C
  • magnitude of third charge, Q_3=5\times 10^{-6}\ C
  • position of second charge, (x_2,y_2)\equiv(0,4.35)\ cm
  • position of third charge, (x_3,y_3)\equiv(3.1,3.8)\ cm

<u>Now the distance between the charge at at origin and the second charge:</u>

d_2=\sqrt{(x_2-0)^2+(y_2-0)^2}

d_2=\sqrt{(0-0)^2+(4.35-0)^2}

d_2=0.0435\ m

<u>Now the distance between the charge at at origin and the third charge:</u>

d_3=\sqrt{(x_3-0)^2+(y_3-0)^2}

d_3=\sqrt{(3.1-0)^2+(3.8-0)^2}

d_3=0.04904\ m

<u>Now the force due to second charge:</u>

F_2=\frac{1}{4\pi.\epsilon_0} \times \frac{Q_0.Q_2}{d_2^2}

F_2=9\times 10^9\times \frac{3.3\times 2.05}{0.0435^2}

F_2=32175.98\times 10^9\ N attractive towards +y

<u>Now the force due to third charge:</u>

F_3=\frac{1}{4\pi.\epsilon_0} \times \frac{Q_0.Q_3}{d_3^2}

F_3=9\times 10^9\times \frac{3.3\times 5}{0.04904^2}

F_3=61748.38\times 10^9\ N attractive

<u>Now the its horizontal component:</u>

F_{3h}=\frac{3.1}{4.9} \times 61748.38\times 10^9

F_{3h}=39065.298\times 10^9\ N attractive toward +x axis

<u>Now the its vertical component:</u>

F_{3v}=\frac{3.8}{4.9} \times 61748.38\times 10^9

F_{3v}=47886.49\times 10^9\ N upwards attractive

Now the net vertical force:

F_v=F_{3v}+F_2

F_v=47886.49\times 10^9+32175.98\times 10^9

F_v=80062.47\times 10^9

You might be interested in
For which group of people might brain-powered cars allow the greatest increase in mobility?
dolphi86 [110]
Brain-powered cars?
The answer would be people who lack motor skills in their legs.
8 0
3 years ago
Read 2 more answers
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
sveta [45]

Answer:

the two ice skater have the same momentum but the are in different directions.

Paula will have a greater speed than Ricardo after the push-off.

Explanation:

Given that:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

A. Which skater, if either, has the greater momentum after the push-off? Explain.

The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off

The law of conservation of momentum states that the total momentum of two  or more objects acting upon one another will not change, provided there are no external forces acting on them.

So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.

Momentum is the product of mass and velocity.

SO, from the information given:

Let represent the mass of Paula with m_{Pa} and its initial velocity with u_{Pa}

Let represent the mass of Ricardo with m_{Ri} and its initial velocity with u_{Ri}

At rest ;

their velocities will be zero, i.e

u_{Pa} = u_{Ri} = 0

The initial momentum for this process can be represented as :

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} = 0

after push off from each other then their final velocity will be v_{Pa} and v_{Ri}

The we can say their final momentum is:

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri} = 0

Using the law of conservation of momentum as states earlier.

Initial momentum = final momentum = 0

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} =  m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

Since the initial velocities are stating at rest then ; u = 0

m_{Pa}(0) + m_{Pa}(0) = m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}  = 0

m_{Pa}v_{Pa} = - m_{Ri}v_{Ri}

Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.

 B. Which skater, if either, has the greater speed after the push-off? Explain.

Given that Ricardo weighs more than Paula

So m_{Ri} > m_{Pa} ;

Then \mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}

The magnitude of their momentum which is a product of mass and velocity can now be expressed as:

m_{Pa}v_{Pa} =  m_{Ri}v_{Ri}

The ratio is

\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1

v_{Pa} >v_{Ri}

Therefore, Paula will have a greater speed than Ricardo after the push-off.

6 0
3 years ago
The ash produced when solid waste is incinerated is ______ than the original waste.
11111nata11111 [884]
The ash is more toxic
5 0
3 years ago
A book is moved once around the perimeter of a tabletop with dimensions 1.2 m x 1.8 m.
Goryan [66]

Answer:

a) 0m

b) 6m

Explanation:

First, we need to remember:

Displacement: Difference between final and initial position.

Distance traveled: Total distance traveled.

a) If the final position is the same as the initial position, then:

final position = initial position

And we know that:

displacement = final position - initial position = 0

Then the displacement of the book is zero.

b)

We can assume that the book traveled along the perimeter of the table.

The table is a rectangle of width 1.2m and length 1.8m

Remember that for a rectangle of width W and length L, the perimeter is:

P = 2*L + 2*W

Then the perimeter of the table is:

P = 2*1.2m + 2*1.8m = 6m

This means that the distance traveled by the book is 6 meters.

3 0
2 years ago
The magnitude of the centripetal force acting on
Sergio039 [100]
1 - Radius of the path is increased
The formula for centripetal force is Fc=mv^2/r, therefore if r increases, a the divisor is larger and hence the centripetal force will be smaller.

5 0
3 years ago
Other questions:
  • The value of gravitational acceleration of a body on earth is 9.8m/s^2. The gravitational potential energy for a 1.00 kilogram o
    8·1 answer
  • Suppose a rocket ship in deep space moves with constant acceleration equal to 9.8 m/s2, which gives the illusion of normal gravi
    8·1 answer
  • The strength of an electromagnet can be altered by
    5·2 answers
  • What kind of wave (transverse of longitudinal) is each of the following and why?
    13·1 answer
  • You want to calculate the displacement of an object thrown over a bridge. Using -10m/s^2 for acceleration due to gravity, what w
    8·1 answer
  • John attached a ball to a spring
    13·1 answer
  • Consider a wave along the length of a stretched slinky toy, where the distance between coils increases and decreases. What type
    14·2 answers
  • Two objects, A and B, are in contact with one another. Initially, the temperature of A is 50 °C and the temperature of B is 100
    7·1 answer
  • Which statement accurately describes current electricity?
    8·1 answer
  • a large sphere is on a horizontal field on a sunny day. at a certain time the shadow reaches out a distance of 10 m from the poi
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!