I think the correct answer from the choices listed above is option A. <span>In an exothermic reaction, the bonding energy of the product is </span><span>less than the reactant because it is only at this condition that the energy is released by the reaction.</span>
Answer:
The correct answer is option c.
Explanation:
Formula used to determine an average atomic mass :

Mass of isotope Sb-121 = 120.904 amu
Fractional abundance of Sb-121 = 57.21% = 0.5721
Mass of isotope Sb-123 = 122.904 amu
Fractional abundance of Sb-123 = 42.79% = 0.4279
Average atomic mass of Sb:

- If the abundance of the first isotope is 68.037%, then the abundance of the second isotope is 100%-68.037%.
Substituting into the atomic mass formula,

Nothing, he shouldn’t be able to move it. Think about it like this say you try really hard to push something that is 5,000 pounds and you push as hard as you can. Well you can’t move it bc it weighs more than you can push. I’m sure their is a equation you can use to see how much you can push (body weight=force?)
A chemical reaction that releases energy usually in the form of heat