Explanation:
Given that,
Radius of the disk, r = 0.25 m
Mass, m = 45.2 kg
Length of the ramp, l = 5.4 m
Angle made by the ramp with horizontal, 
Solution,
As the disk starts from rest from the top of the ramp, the potential energy is equal to the sum of translational kinetic energy and the rotational kinetic energy or by using the law of conservation of energy as :
(a) 
h is the height of the ramp


v is the speed of the disk's center
I is the moment of inertia of the disk,






v = 4.52 m/s
(b) At the bottom of the ramp, the angular speed of the disk is given by :



Hence, this is the required solution.
La capital de Puerto Rico es la ciudad "San Juan".
None of the above
mass is measurement of how much stuff in inside something.
if you freeze or heat an object, you merely change the state of the object. the mass is conserved.
if you change the elevation, nothing happens to the mass. the stuff will not leave the object.
so it is None of the above
Answer:
Part a)

Part b)
force is 21.2 times more than the weight of the person
Explanation:
Part a)
As it is given that the distance after which he stopped is given as
d = 1.50 cm
here finally it stops so final speed is given as

initial speed is given as

now by the equation of kinematics we know that



Now the force on the leg is given as

m = mass of leg = 13 kg


Part b)
Force due to weight of the object

here we know
M = 75.0 kg


Now we know that the ratio of the weight with the force on leg is given as

so force is 21.2 times more than the weight of the person
Answer:
if the intensity of photons is constant then number of ejected electrons will remain same
Explanation:
As per photoelectric effect we know that when light of sufficient frequency fall on the surface of metal then electrons get ejected out of the surface with certain kinetic energy
Here the energy of photons is used to eject out the electrons from metal surface and to give the kinetic energy to the ejected electrons
so we have

here W = work function of metal which shows the energy required to eject out electrons from metal surface
KE = kinetic energy of ejected electrons
now if we increase the frequency of the photons that incident on the metal surface then in that case the incident energy will increase
So the electrons will eject out with more kinetic energy while if the number of photon is constant or the intensity of photons is constant then number of ejected electrons will remain same