Answer:
The mechanism for the formation of hexamethylenetetraamine predicts the formation of aminomethanol from the addition of ammonia to formaldehyde. This molecule subsequently undergoes unimolecular decomposition to form methanimine and water.
Explanation:
Brainliest please?
Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
This is a Charles' Law problem: V1/T1 = V2/T2. As the temperature of a fixed mass of gas decreases at a constant pressure, the volume of the gas should also decrease proportionally.
To use Charles' Law, the temperature must be in Kelvin (x °C = x + 273.15 K). We want to solve Charles' Law for V2, which we can obtain by rearranging the equation into V2 = V1T2/T1. Given V1 = 25 L, T1 = 1200 °C (1473.15 K), and T2 = 25 °C (298.15 K):
V2 = (25 L)(298.15 K)/(1473.15 K) = 5.1 L.
When the cool and hot zones of a non luminous flame’s air
control valve is closed, the gas in which will be in placed as first and as it
encounters air as it was in the mouth of the burner, there will be a presence
of incomplete mixing, causing a combustion which would be incomplete and will
also lead to a process that can’t be controlled, resulting to flame that is
cool.